Trading places: how do DNA polymerases switch during translesion DNA synthesis?

Mol Cell

Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.

Published: May 2005

The replicative bypass of base damage in DNA (translesion DNA synthesis [TLS]) is a ubiquitous mechanism for relieving arrested DNA replication. The process requires multiple polymerase switching events during which the high-fidelity DNA polymerase in the replication machinery arrested at the primer terminus is replaced by one or more polymerases that are specialized for TLS. When replicative bypass is fully completed, the primer terminus is once again occupied by high-fidelity polymerases in the replicative machinery. This review addresses recent advances in our understanding of DNA polymerase switching during TLS in bacteria such as E. coli and in lower and higher eukaryotes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2005.03.032DOI Listing

Publication Analysis

Top Keywords

translesion dna
8
replicative bypass
8
polymerase switching
8
dna polymerase
8
primer terminus
8
dna
7
trading places
4
places dna
4
dna polymerases
4
polymerases switch
4

Similar Publications

USP1 in regulation of DNA repair pathways.

DNA Repair (Amst)

January 2025

School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, Scotland. Electronic address:

Ubiquitin-specific protease 1 (USP1) is the founding member of the family of cysteine proteases that catalyse hydrolysis of the isopeptide bond between ubiquitin and targets. USP1 is often overexpressed in various cancers, and expression levels correlate with poor prognosis. USP1 and its partner USP1-associated Factor 1 (UAF1) are required for deubiquitinating monoubiquitin signals in DNA interstrand crosslink repair, and in Translesion synthesis, among others, and both proteins are subject to multiple regulations themselves.

View Article and Find Full Text PDF

REV7: a small but mighty regulator of genome maintenance and cancer development.

Front Oncol

January 2025

Department of Biology, Tufts University, Medford, MA, United States.

REV7, also known as MAD2B, MAD2L2, and FANCV, is a HORMA-domain family protein crucial to multiple genome stability pathways. REV7's canonical role is as a member of polymerase ζ, a specialized translesion synthesis polymerase essential for DNA damage tolerance. REV7 also ensures accurate cell cycle progression and prevents premature mitotic progression by sequestering an anaphase-promoting complex/cyclosome activator.

View Article and Find Full Text PDF

DNA viruses at once elicit and commandeer host pathways, including DNA repair pathways for virus replication. Despite encoding its own DNA polymerase and processivity factor, human cytomegalovirus (HCMV) recruits the cellular processivity factor, proliferating cell nuclear antigen (PCNA) and specialized host DNA polymerases involved in translesion synthesis (TLS) to replication compartments (RCs) where viral DNA (vDNA) is synthesized. While the recruitment of TLS polymerases is important for viral genome stability, the role of PCNA is poorly understood.

View Article and Find Full Text PDF

Abasic sites are one of the most frequent forms of DNA damage that interfere with DNA replication. However, abasic sites exhibit complex effects because they can be processed into other types of DNA damage. Thus, it remains poorly understood how abasic sites affect replisome progression, which replication-coupled repair pathways they elicit, and whether this is affected by the template strand that is damaged.

View Article and Find Full Text PDF

The replicative polymerase delta is inefficient copying repetitive DNA sequences. Error-prone translesion polymerases have been shown to switch with high-fidelity replicative polymerases to help navigate repetitive DNA. We and others have demonstrated the importance of one such translesion polymerase, polymerase Eta (pol eta), in facilitating replication at genomic regions called common fragile sites (CFS), which are difficult-to-replicate genomic regions that are hypersensitive to replication stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!