Two kinds of chlorocatechol 1,2-dioxygenase (CCD), TfdC and TfdC2 were detected in Sphingomonas sp. strain TFD44. These two CCDs could be simultaneously synthesized in TFD44 during its growth with 2,4-D as the sole carbon and energy sources. The apparent subunit molecular masses of TfdC and TfdC2 estimated by SDS-PAGE analysis were 33.8 and 33.1 kDa, respectively. The genes encoding the two CCDs were cloned and expressed in Escherichia coli. The two purified CCDs showed broad substrate specificities but had different specificity patterns. TfdC showed the highest specificity constant for 3-chlorocatechol and TfdC2 showed the highest specificity constant for 3,5-dichlorocatechol. The substrate specificity difference seemed to correlate with the alternation of amino acid supposed to be involved in the interaction with substrates. Whereas phylogenetic analysis indicated that the CCDs of Sphingomonas constitute a distinctive group among Gram-negative bacteria, TfdC and TfdC2 of TFD44 have divergently evolved in terms of their substrate specificity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2005.05.045 | DOI Listing |
Biochem Biophys Res Commun
July 2005
National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan.
Two kinds of chlorocatechol 1,2-dioxygenase (CCD), TfdC and TfdC2 were detected in Sphingomonas sp. strain TFD44. These two CCDs could be simultaneously synthesized in TFD44 during its growth with 2,4-D as the sole carbon and energy sources.
View Article and Find Full Text PDFArch Microbiol
February 2005
Interdisciplinary Ecological Center, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, 09599 Freiberg, Germany.
The genes responsible for the degradation of 2,4-dichlorophenoxyacetate (2,4-D) by alpha-Proteobacteria have previously been difficult to detect by using gene probes or polymerase chain reaction (PCR) primers. PCR products of the chlorocatechol 1,2-dioxygenase gene, tfdC, now allowed cloning of two chlorocatechol gene clusters from the Sphingomonas sp. strain TFD44.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!