The synthesis of several heterocyclic analogues of the biologically important nucleoside antibiotic toyocamycin and the tricyclic nucleoside triciribine (TCN) were prepared along with their 2'-deoxy counterparts. Coupling of 2-nitropyrrole-3,4-dicarboxamide (15) under a variety of conditions with alpha-chloro-2-deoxy-3,4-di-O-toluoyl-D-ribofuranose (16a) gave mixtures of the alpha and beta anomers. A coupling of 15 with 1-chloro-2,3,5-tri-O-benzoyl-D-ribofuranose (18) gave exclusively the beta anomer. Individually, the two pyrrole nucleosides were treated with Pd/C, H2 to reduce the nitro groups and cyclized with nitrous acid, and the corresponding 4-position was functionalized as a triazoyl derivative. Nucleophillic displacement was carried out with ammonia to give a mixture of 4-amino-1-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)pyrrolo[2,3-d][1,2,3]triazine-5-carbonitrile (26) and 2-amino-1-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)pyrrole-3,4-dicarbonitrile (27), the latter being formed via a retro-Diels-Alder reaction. The subsequent addition of hydrogen sulfide, water, methanol, hydroxylamine, cyanamide, hydrazine and methylhydrazine to the 5-cyano group was carried out to give the corresponding analogues. In the case of methyl hydrazine, subsequent treatment with NaOMe in methanol gave the title hexaazaacenaphthylenes. Biological evaluation of the compounds established that the pyrrole (17beta, 19-21) and most of the pyrrolotriazine (22, 24, 28, 32-34) nucleosides were inactive or weakly active against human cytomegalovirus (HCMV) and herpes simplex virus type 1 (HSV-1). In contrast 29 and 31 were active against one or both of these viruses but activity was poorly separated from cytotoxicity. In contrast, the 2-aza analogue of sangivamycin (30) was active against HCMV and HSV-1 but this apparent activity was most likely due to its high cytotoxicity. The tricyclic nucleoside 12, was active against its target virus, human immunodeficiency virus type 1 (HIV-1), but this activity was not well separated from cytotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0402014DOI Listing

Publication Analysis

Top Keywords

tricyclic nucleoside
8
virus type
8
separated cytotoxicity
8
design synthesis
4
synthesis antiviral
4
activity
4
antiviral activity
4
activity novel
4
novel 45-disubstituted
4
45-disubstituted 7-beta-d-ribofuranosylpyrrolo[23-d][123]triazines
4

Similar Publications

We report here the synthesis of tricyclic nucleoside analogues via acid-catalyzed cyclization of guanine with 1,1,3,3-tetramethoxypropane. The method enables the use of hydroxyl-unprotected antiviral drugs (acyclovir, ganciclovir, and penciclovir), guanosines, oligonucleotide, and triazole-linked nucleoside dimers as substrates. Nucleoside trimer and tetramer were synthesized by derivatization reactions.

View Article and Find Full Text PDF

The ex vivo effects of hypoxanthine-tricyclano, a synthetic adenosine analogue, on rat left and right atria.

Gen Physiol Biophys

November 2024

Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.

Hypoxanthine-tricyclano is a synthetic adenosine analogue, in which adenine and ribose have been replaced by hypoxanthine and a morpholino-derived tricyclic moiety, respectively. We investigated whether hypoxanthine-tricyclano could influence atrial inotropy and/or chronotropy, two important functions regulated by the A1 receptor, the main adenosine receptor type of the supraventricular myocardium. Paced left atria and spontaneously beating right atria, isolated from male, 30-35 weeks old, Wistar rats, were used.

View Article and Find Full Text PDF

Fluorescent markers play important roles in spectroscopic and microscopic research techniques and are broadly used in basic and applied sciences. We have obtained markers with fluorescent properties, two etheno derivatives of 2-aminopurine, as follows: 1,N-etheno-2-aminopurine (1,N-ε2APu, ) and N,3-etheno-2-aminopurine (N,3-ε2APu, ). In the present paper, we investigate their interaction with two key enzymes of purine metabolism, purine nucleoside phosphorylase (PNP), and xanthine oxidase (XO), using diffraction of X-rays on protein crystals, isothermal titration calorimetry, and fluorescence spectroscopy.

View Article and Find Full Text PDF

Signaling effect, combinations, and clinical applications of triciribine.

J Chemother

September 2024

Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.

Article Synopsis
  • - Triciribine (TCN), a tricyclic nucleoside first synthesized in 1971, inhibits DNA synthesis and is particularly selective for the Akt pathway.
  • - Although TCN showed limited single-agent effectiveness in solid tumors, it has demonstrated promising results when combined with various other treatments like dasatinib and gemcitabine against cancers like pancreatic and breast.
  • - Beyond cancer treatment, TCN’s ability to inhibit Akt suggests potential benefits for treating lung injuries, including those caused by COVID-19.
View Article and Find Full Text PDF

Some intriguing skeletal transformations were observed in the reaction of α-hydroxypyrrolidine thymine nucleoside with different dicarbonyl compounds. In these reactions, unusual ring systems, together with new C-C bonds and stereogenic centers of defined configuration, were formed in a single step. These reactions were initiated by the nucleophilic attack of the NH of the pyrrolidine ring, present on , on one of the carbonyl moieties of a dicarbonyl reagent and seem to proceed through an enamine-iminium mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!