New therapeutics to combat malaria are desperately needed. Here we show that the enzyme protein farnesyltransferase (PFT) from the malaria parasite Plasmodium falciparum (P. falciparum) is an ideal drug target. PFT inhibitors (PFTIs) are well tolerated in man, but are highly cytotoxic to P. falciparum. Because of their anticancer properties, PFTIs comprise a highly developed class of compounds. PFTIs are ideal for the rapid development of antimalarials, allowing "piggy-backing" on previously garnered information. Low nanomolar concentrations of tetrahydroquinoline (THQ)-based PFTIs inhibit P. falciparum PFT and are cytotoxic to cultured parasites. Biochemical studies suggest inhibition of parasite PFT as the mode of THQ cytotoxicity. Studies with malaria-infected mice show that THQ PFTIs dramatically reduce parasitemia and lead to parasite eradication in the majority of animals. These studies validate P. falciparum PFT as a target for the development of antimalarials and describe a potent new class of THQ PFTIs with antimalaria activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm0491039 | DOI Listing |
Int J Mol Sci
May 2024
Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification.
View Article and Find Full Text PDFPlants (Basel)
April 2024
Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France.
In plants, the plastidial mevalonate (MVA)-independent pathway is required for the modification with geranylgeranyl groups of CaaL-motif proteins, which are substrates of protein geranylgeranyltransferase type-I (PGGT-I). As a consequence, fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose (DX)-5 phosphate reductoisomerase/DXR, the second enzyme in this so-called methylerythritol phosphate (MEP) pathway, also acts as an effective inhibitor of protein prenylation. This can be visualized in plant cells by confocal microscopy by expressing GFP-CaM-CVIL, a prenylation sensor protein.
View Article and Find Full Text PDFPlant Methods
October 2023
Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan, 32001, Taiwan.
Background: Protein farnesylation involves the addition of a 15-carbon polyunsaturated farnesyl group to proteins whose C-terminus ends with a CaaX motif. This post-translational protein modification is catalyzed by a heterodimeric protein, i.e.
View Article and Find Full Text PDFJ Periodontol
December 2023
Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany.
Background: Prenyltrasferases (PTases) are a class of enzymes known to be responsible for promoting posttranslational modification at the carboxyl terminus of proteins containing a so-called CaaX-motif. The process is responsible for proper membrane localization and the appropriate function of several intracellular signaling proteins. Current research demonstrating the pathomechanistic importance of prenylation in inflammatory illnesses emphasizes the requirement to ascertain the differential expression of PT genes under inflammatory settings, particularly in periodontal disease.
View Article and Find Full Text PDFPlant Sci
February 2023
IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain. Electronic address:
The most devastating fungal disease of peaches and nectarines is brown rot, caused by Monilinia spp. Among the many plant responses against biotic stress, plant terpenoids play essential protective functions, including antioxidant activities and inhibition of pathogen growth. Herein, we aimed to characterize the expression of terpenoid biosynthetic genes in fruit tissues that presented different susceptibility to brown rot.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!