Although the zebrafish has been used increasingly for the study of pronephric kidney development, studies of renal ion transporters and channels of the zebrafish remain few. We report the cDNA cloning and characterization of the AE2 anion exchanger ortholog from zebrafish kidney, slc4a2/ae2. The ae2 gene in linkage group 2 encodes a polypeptide of 1,228 aa exhibiting 64% aa identity with mouse AE2a. The exon-intron boundaries of the zebrafish ae2 gene are nearly identical to those of the rodent and human genes. Whole-mount in situ hybridization detects ae2 mRNA in prospective midbrain as early as the five-somite stage, then later in the pronephric primordia and the forming pronephric duct, where it persists through 72 h postfertilization (hpf). Zebrafish Ae2 expressed in Xenopus laevis oocytes mediates Na(+)-independent, electroneutral (36)Cl(-)/Cl(-) exchange moderately sensitive to inhibition by DIDS, is inhibited by acidic intracellular pH and by acidic extracellular pH, but activated by (acidifying) ammonium and by hypertonicity. Zebrafish Ae2 also mediates Cl(-)/HCO(3)(-) exchange in X. laevis oocytes and accumulates in or near the plasma membrane in transfected HEK-293 cells. In 24-48 hpf zebrafish embryos, the predominant but not exclusive localization of Ae2 polypeptide is the apical membrane of pronephric duct epithelial cells. Thus Ae2 resembles its mammalian orthologs in function, mechanism, and acute regulation but differs in its preferentially apical expression in kidney. These results will inform tests of the role of Ae2 in zebrafish kidney development and function.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00122.2005DOI Listing

Publication Analysis

Top Keywords

zebrafish ae2
12
zebrafish
9
ae2
9
anion exchanger
8
cdna cloning
8
kidney development
8
zebrafish kidney
8
ae2 gene
8
pronephric duct
8
hpf zebrafish
8

Similar Publications

Molecular cloning and functional characterization of zebrafish Slc4a3/Ae3 anion exchanger.

Pflugers Arch

August 2014

Renal Division and Molecular and Vascular Medicine Division, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School, 99 Brookline Ave. RN-380 F, Boston, MA, 02215, USA.

The zebrafish genome encodes two slc4a1 genes, one expressed in erythroid tissues and the other in the HR (H(+)-ATPase-rich) type of embryonic skin ionocytes, and two slc4a2 genes, one in proximal pronephric duct and the other in several extrarenal tissues of the embryo. We now report cDNA cloning and functional characterization of zebrafish slc4a3/ae3 gene products. The single ae3 gene on chromosome 9 generates at least two low-abundance ae3 transcripts differing only in their 5'-untranslated regions and encoding a single definitive Ae3 polypeptide of 1170 amino acids.

View Article and Find Full Text PDF

Zebrafish ae2.2 encodes a second slc4a2 anion exchanger.

Am J Physiol Regul Integr Comp Physiol

March 2008

Molecular and Vascular Medicine and Renal Units, Beth Israel Deaconess Medical Center E/RW763, 330 Brookline Ave., Boston, MA 02215, USA.

The genome of zebrafish (Danio rerio) encodes two unlinked genes equally closely related to the SLC4A2/AE2 anion exchanger genes of mammals. One of these is the recently reported zebrafish ae2 gene (Shmukler BE, Kurschat CE, Ackermann GE, Jiang L, Zhou Y, Barut B, Stuart-Tilley AK, Zhao J, Zon LI, Drummond IA, Vandorpe DH, Paw BH, Alper SL. Am J Physiol Renal Physiol Renal Physiol 289: F835-F849, 2005), now called ae2.

View Article and Find Full Text PDF

A phylogenetic tree of anion exchangers (AE) was performed in order to better understand relationships between the different known AE and how they arose. Indeed, the different known AE1 from mammals or fish do not exhibit the same transport features: all studied anion exchangers 1 (AE1) catalyse an electroneutral Cl-/HCO3- exchange through the plasma membrane; however, trout AE1 (tAE1) is able to spontaneously form an anion conductive pathway permeable to some inorganic cations (Na+ and K+) as well as to organic osmolytes such as taurine. Therefore, it has been proposed that this major erythrocyte membrane protein could play a key role for the cell volume regulation of trout red cells.

View Article and Find Full Text PDF

Molecular pathophysiology of SLC4 bicarbonate transporters.

Curr Opin Nephrol Hypertens

September 2005

Departments of Physiology & Biophysics and Pharmacology, Case Western Reserve University School of Medicine, 2119 Abington Road, Cleveland, OH 44106-4970, USA.

Purpose Of Review: Acid-base (H and HCO3) transport in the kidney is crucial for maintaining blood pH, cellular pH and excreting metabolic acid. HCO3 transport in the kidney is mediated by HCO3 transporter proteins which occur in two gene families in humans, vertebrates and invertebrates (SLC4 and SLC26). Since SLC26 transporters have other, non-HCO3 transport functions, this review highlights the history and recent advances in the SLC4 transporters in the kidney.

View Article and Find Full Text PDF

Zebrafish slc4a2/ae2 anion exchanger: cDNA cloning, mapping, functional characterization, and localization.

Am J Physiol Renal Physiol

October 2005

Molecular Medicine and Renal Units, Beth Israel Deaconess Med. Ctr. E/RW763, 330 Brookline Ave., Boston, MA 02215, USA.

Although the zebrafish has been used increasingly for the study of pronephric kidney development, studies of renal ion transporters and channels of the zebrafish remain few. We report the cDNA cloning and characterization of the AE2 anion exchanger ortholog from zebrafish kidney, slc4a2/ae2. The ae2 gene in linkage group 2 encodes a polypeptide of 1,228 aa exhibiting 64% aa identity with mouse AE2a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!