Purpose: Membrane depolarization and subsequent synaptic release of l-glutamate have been implicated in ischemic retinal damage. However, the mechanisms that lead to ischemia-induced retinal damage are poorly understood. In this study, KCl, a classic membrane depolarizing agent, was injected into the vitreous humor, and the role of matrix metalloproteinase (MMP)-9 in KCl-induced retinal damage was investigated.

Methods: Normal adult CD-1 mice were treated with KCl by intravitreal injection. MMP activity in retinal protein extracts was determined by gelatin zymography. Tissue localization of MMP-9 in the retina was determined by immunohistochemistry. MMP-9, MMP-2, tissue inhibitor of MMP (TIMP)-1, TIMP-2, Bax, and BCl-2 proteins in retinal extracts were determined by Western blot analysis. Apoptotic cell death in the retina was determined by TUNEL assays. Retinal damage was assessed by immunolocalization studies with antibodies against neurofilament-light (NF-L) and calretinin.

Results: Depolarizing concentrations of KCl induced a dose- and time-related upregulation in MMP-9 activity and protein in the retina. KCl-mediated MMP-9 upregulation was associated with an increase in proapoptotic protein Bax and apoptotic death of cells in the ganglion cell (GCL) and inner nuclear layer (INL), and subsequent loss of NF-L-positive ganglion cells and calretinin-positive amacrine cells. Intravitreal injection of KCl along with an N-methyl-d-aspartate (NMDA)-type glutamate receptor antagonist, MK-801, and a non-NMDA-type glutamate receptor antagonist, NBQX, resulted in a reduction in KCl-mediated MMP-9 upregulation in the retina. Furthermore, a synthetic MMP inhibitor inhibited KCl-mediated MMP-9 upregulation, which led to a significant attenuation of KCl-induced retinal damage.

Conclusions: These results suggest that upregulation of MMP-9, in part, plays a causative role in KCl-induced retinal damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201386PMC
http://dx.doi.org/10.1167/iovs.04-1376DOI Listing

Publication Analysis

Top Keywords

retinal damage
20
kcl-induced retinal
12
kcl-mediated mmp-9
12
mmp-9 upregulation
12
retinal
9
membrane depolarization
8
mmp-9
8
intravitreal injection
8
extracts determined
8
retina determined
8

Similar Publications

The retinal pigment epithelium (RPE) surrounds the posterior eye and maintains the health and function of the photoreceptors. Consequently, RPE dysfunction or damage has a devastating impact on vision. Due to complex etiologies, there are currently no cures for patients with RPE degenerative diseases, which remain some of the most prevalent causes of vision loss worldwide.

View Article and Find Full Text PDF

Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.

Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).

View Article and Find Full Text PDF

Background: Hypertension-mediated organ damage (HMOD) is a critical complication of hypertension that can present with cardiac, retinal, and renal manifestations and affect patient outcomes. Serum signal peptide, CUB (complement C1r/C1s, Uegf, and Bmp1) domain, and epidermal growth factor-like domain-containing protein 1 (SCUBE-1), a novel biomarker implicated in vascular pathology, shows promise for detecting HMOD. This study aims to explore the relation between SCUBE-1 levels and HMOD in hypertensive patients.

View Article and Find Full Text PDF

Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.

View Article and Find Full Text PDF

Introduction: Brain ischemia-reperfusion can cause serious and irreversible health problems. Recent studies have suggested that certain flavonoids may help stabilize the correctly folded structure of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations.

Objective: The current study aimed to determine the effect of 3',4'-Dihydroxyflavonol (DiOHF) supplementation for 1 week on lipid peroxidation in the retina tissue following focal brain ischemia-reperfusion in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!