Purpose: Tyrosine phosphorylation regulates many aspects of cell function; thus, cells that have different roles often display different patterns of tyrosine phosphorylation. Because there is interest in differential function of the anterior and equatorial regions of the lens epithelium, studies were conducted to compare tyrosine phosphorylation in the two zones.
Methods: Anterior and equatorial regions of the porcine lens epithelium were collected. Using Western blot analysis, tissue homogenates were probed for tyrosine kinase proteins, phospho-Src, phosphotyrosine, and proliferating cell nuclear antigen (PCNA).
Results: Phosphotyrosine immunoblots revealed a marked difference between the pattern of tyrosine phosphorylation in anterior and equatorial regions of the epithelium. Many more bands were detected in the equatorial region, and band density was greater. The abundance of total and active Src family kinases was higher at the equator than at the anterior epithelium. Src kinase activity, which was measured directly by quantifying phosphorylation of a synthetic target peptide using (32)P-gamma-ATP, was detectable only at the equator. In organ-cultured lenses, PP2, a specific inhibitor of the Src kinase family, reduced the density of the phosphotyrosine protein bands. The abundance of PCNA, a protein expressed in proliferating cells, also was reduced in PP2-treated lenses.
Conclusions: The results suggest that the higher Src family kinase activity at the equator contributes to the higher degree of protein phosphorylation observed in this region. The ability of PP2 to suppress PCNA expression suggests a possible link between the activity of Src family kinases and cell proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.04-1199 | DOI Listing |
Oncogene
January 2025
Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
Signaling pathways play key roles in many important biological processes, such as cell division, differentiation, and migration. Phosphorylation site-specific antibodies specifically target proteins phosphorylated on a given tyrosine, threonine, or serine residue. The use of phospho-specific antibodies facilitates the analysis of signaling pathway regulation and activity.
View Article and Find Full Text PDFBiomedicines
January 2025
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
: Hepatocellular carcinoma (HCC) remains a significant global health concern, primarily due to the limited efficacy of targeted therapies, which are often compromised by drug resistance and adverse side effects. : In this study, we utilized a Tandem Mass Tag (TMT)-based quantitative proteomic approach to analyze global protein expression and serine/threonine/tyrosine (S/T/Y) phosphorylation modifications in HepG2 cells following treatment with three clinically relevant hepatocellular carcinoma-targeted agents: apatinib, regorafenib, and lenvatinib. : Utilizing KEGG pathway enrichment analysis, biological process enrichment analysis, and protein interaction network analysis, we elucidated the common and specific metabolic pathways, biological processes, and protein interaction regulatory networks influenced by three liver cancer therapeutics.
View Article and Find Full Text PDFCell Rep
January 2025
MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China. Electronic address:
Transforming growth factor β (TGF-β) is well known to play paradoxical roles in tumorigenesis as it has both growth-inhibitory and pro-metastatic effects. However, the underlying mechanisms of how TGF-β drives the opposing responses remain largely unknown. Here, we report that ERBB4, a member of the ERBB receptor tyrosine kinase family, specifically promotes TGF-β's metastatic response but not its anti-growth response.
View Article and Find Full Text PDFSci Rep
January 2025
Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
Despite their high clinical relevance, obtaining structural and biophysical data on transmembrane proteins has been hindered by challenges involved in their expression and extraction in a homogeneous, functionally-active form. The inherent enzymatic activity of receptor tyrosine kinases (RTKs) presents additional challenges. Oncogenic fusions of RTKs with heterologous partners represent a particularly difficult-to-express protein subtype due to their high flexibility, aggregation propensity and the lack of a known method for extraction within the native lipid environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!