This paper reports on a serological and virological survey for swine influenza virus (SIV) in densely populated pig areas in Spain. The survey was undertaken to examine whether the H1N2 SIV subtype circulates in pigs in these areas, as in other European regions. Six hundred sow sera from 100 unvaccinated breeding herds across Northern and Eastern Spain were examined using haemagglutination inhibition (HI) tests against H1N1, H3N2 and H1N2 SIV subtypes. Additionally, 225 lung samples from pigs with respiratory problems were examined for the presence of SIV by virus isolation in embryonated chicken eggs and by a commercial membrane immunoassay. The virus isolates were further identified by HI and RT-PCR followed by partial cDNA sequencing. The HI test on sera revealed the presence of antibodies against at least one of the SIV subtypes in 83% of the herds and in 76.3% of the animals studied. Of the 600 sow sera tested, 109 (18.2%), 60 (10%) and 41 (6.8%) had SIV antibodies to subtype H1N2 alone, H3N2 alone and H1N1 alone, respectively. Twelve H3N2 viruses, 9 H1N1 viruses and 1 H1N2 virus were isolated from the lungs of pigs with respiratory problems. The analysis of a 436 nucleotide sequence of the neuraminidase gene from the H1N2 strain isolated further confirmed its identity. Demonstrably, swine influenza is still endemic in the studied swine population and a new subtype, the H1N2, may be becoming established and involved in clinical outbreaks of the disease in Spain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tvjl.2005.04.014DOI Listing

Publication Analysis

Top Keywords

h1n1 h3n2
8
densely populated
8
populated pig
8
pig areas
8
areas spain
8
swine influenza
8
h1n2 siv
8
sow sera
8
siv subtypes
8
pigs respiratory
8

Similar Publications

Background: Vaccine co-administration can increase vaccination coverage. We assessed the safety, reactogenicity, and immunogenicity of concomitant administration of Ad26.COV2.

View Article and Find Full Text PDF

Objectives: To investigate the prevalence of nine respiratory viruses and their clinical characteristics in children aged up to 5 years old in the state of Sergipe, Northeast of Brazil in the pre-COVID-19 pandemic period.

Methods: Children with suspected influenza virus infection were included in the study. Clinical samples were screened using real-time quantitative polymerase chain reaction for the diagnosis of adenovirus, parainfluenza (PIV)1, PIV2, PIV3, and human metapneumovirus.

View Article and Find Full Text PDF

Acute respiratory infections (ARIs) are a leading cause of death in children under five globally. The seasonal trends and profiles of respiratory viruses vary by region and season. Due to limited information and the population's vulnerability, we conducted the hospital-based surveillance of respiratory viruses in Eastern Uttar Pradesh.

View Article and Find Full Text PDF

Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses.

Vaccines (Basel)

January 2025

Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA.

An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5).

View Article and Find Full Text PDF

The Development of a Novel Broad-Spectrum Influenza Polypeptide Vaccine Based on Multi-Epitope Tandem Sequences.

Vaccines (Basel)

January 2025

NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

Background: Polypeptide vaccines have the potential to improve immune responses by targeting conserved and weakly immunogenic regions in antigens. This study aimed to identify and evaluate the efficacy of a novel influenza universal vaccine candidate consisting of multiple polypeptides derived from highly conserved regions of influenza virus proteins hemagglutinin (HA), neuraminidase (NA), and matrix protein 2 (M2).

Methods: Immunoinformatics tools were used to screen conserved epitopes from different influenza virus subtypes (H1N1, H3N2, H5N1, H7N9, H9N2, and IBV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!