Mature Leydig cells, the main source of testicular testosterone in mammals, arise from immature mesenchymal precursors through an LH-dependent differentiation process. In order to study the steroidogenic potential of these precursors, undifferentiated mesenchymal cells were obtained from the testicular interstitium of two patients with androgen insensitivity syndrome. After double digestion with collagenase and separation of the suspensions in a Percoll density gradient, the cells were cultured in Ham's F12 medium: Dulbecco's Modified Eagle Medium (1:1) supplemented with antibiotics, transferrin, insulin, hydrocortisone, and vitamin E with or without 1 IU of hCG/ml. At 11 days in culture, samples were removed for morphological characterization and determination of 3 beta-hydroxysteroid dehydrogenase activity (3 beta-HSD). Testosterone concentration was determined by RIA in the culture medium at different intervals. Cultured cells were mesenchymal in appearance, elongated in shape, with numerous processes running in different directions. No mature Leydig cells were present. In basal conditions, the percentages of 3 beta-HSD-positive cells at 11 days on patients 1 and 2 were 33% and 28%, respectively, and the testosterone concentrations in the culture media were 4.8 and 8.4 ng.10(6) cells.24 h, respectively. In cultures stimulated with hCG, there was an increase of histochemical reactivity (47% and 42% in patients 1 and 2, respectively) and in the amount of testosterone secreted (10.2 and 12.0 ng.10(6) cells, respectively). Electron microscopic studies of cultures grown in the absence of hCG demonstrated a homogenous population of poorly differentiated, fibroblastic-type mesenchymal cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod46.5.793DOI Listing

Publication Analysis

Top Keywords

mesenchymal precursors
8
patients androgen
8
androgen insensitivity
8
insensitivity syndrome
8
mature leydig
8
leydig cells
8
cells
7
mesenchymal
5
testosterone
5
isolation human
4

Similar Publications

Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.

View Article and Find Full Text PDF

Anterior-posterior (A-P) elongation of the palate is a critical aspect of integrated midfacial morphogenesis. Reciprocal epithelial-mesenchymal interactions drive secondary palate elongation that is coupled to the periodic formation of signaling centers within the rugae growth zone (RGZ). However, the relationship between RGZ-driven morphogenetic processes, the differentiative dynamics of underlying palatal bone mesenchymal precursors, and the segmental organization of the upper jaw has remained enigmatic.

View Article and Find Full Text PDF

The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.

View Article and Find Full Text PDF

Embryonic Mammary Gland Morphogenesis.

Adv Exp Med Biol

January 2025

Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.

Embryonic mammary gland development unfolds with the specification of bilateral mammary lines, thereafter progressing through placode, bud, and sprout stages before branching morphogenesis. Extensive epithelial-mesenchymal interactions guide morphogenesis from embryogenesis to adulthood. Two distinct mesenchymal tissues are involved, the primary mammary mesenchyme that harbors mammary inductive capacity, and the secondary mesenchyme, the precursor of the adult stroma.

View Article and Find Full Text PDF

Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!