A set of four non-heme iron(II) and 2-oxoglutarate-dependent enzymes catalyze the post-translational modification of a transcription factor, hypoxia inducible factor (HIF), that mediates the hypoxic response in animals. Hydroxylation of HIF both causes its degradation and limits its activity. We describe how the use of structural data coupled to solid-phase synthesis led to the discovery of a selective inhibitor of one of the HIF hydroxylases. The inhibitor N-oxalyl-d-phenylalanine was shown to inhibit the HIF asparaginyl hydroxylase (FIH) but not a HIF prolyl hydroxylase. A crystal structure of the inhibitor complexed to FIH reveals that it binds in the 2OG and, likely, in the dioxygen binding site. The results will help to enable the modulation of the hypoxic response for the up-regulation of specific genes of biomedical importance, such as erythropoietin and vascular endothelial growth factor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja050841b | DOI Listing |
BMC Med Genomics
January 2025
Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China.
Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK.
Hypoxia is a common feature of solid tumors that has previously been linked to resistance to radiotherapy and chemotherapy, and more recently to immunotherapy. In particular, hypoxic tumors exclude T cells and inhibit their activity, suggesting that tumor cells acquire a mechanism to evade T-cell recognition and killing. Our analysis of hypoxic tumors indicates that hypoxia downregulates the expression of MHC class I and its bound peptides (i.
View Article and Find Full Text PDFBull Math Biol
January 2025
Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.
The extracellular matrix (ECM) is a complex structure involved in many biological processes with collagen being the most abundant protein. Density of collagen fibers in the matrix is a factor influencing cell motility and migration speed. In cancer, this affects the ability of cells to migrate and invade distant tissues which is relevant for designing new therapies.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Departamento de Diagnóstico en Patología y Medicina Oral, Facultad de Odontología, Universidad de La República, General Las Heras 1925, Montevideo, Uruguay.
The tumor microenvironment is an altered milieu that imposes multiple selective pressures leading to the survival and dissemination of aggressive and fit tumor cell subpopulations. How pre-tumoral and tumoral cells respond to changes in their microenvironment will determine the subsequent evolution of the tumor. In this study, we have subjected pre-tumoral and tumoral cells to coverslip-induced hypoxia, which recapitulates the intracellular hypoxia and extracellular acidification characteristic of the early tumor microenvironment, and we have used a combination of quantitative phase microscopy and epifluorescence to analyze diverse cellular responses to this altered environment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kansas Medical Center, Kansas City, KS, USA.
Background: Mitochondrial dysfunction is an early and prominent feature of Alzheimer's disease (AD). We have recently published that lower brain mitochondrial DNA copy number (mtDNAcn) is associated with increased risk of AD neuropathological change and reduced cognitive performance. Here, we addressed how mtDNAcn affects cell-type specific phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!