Recent experimental studies of hetero-synaptic interactions in various systems have shown the role of signaling in the plasticity, challenging the conventional understanding of Hebb's rule. It has also been found that activity plays a major role in plasticity, with neurotrophins acting as molecular signals translating activity into structural changes. Furthermore, role of synaptic efficacy in biasing the outcome of competition has also been revealed recently. Motivated by these experimental findings we present a model for the development of simple cell receptive field structure based on the competitive hetero-synaptic interactions for neurotrophins combined with cooperative hetero-synaptic interactions in the spatial domain. We find that with proper balance in competition and cooperation, the inputs from two populations (ON/OFF) of LGN cells segregate starting from the homogeneous state. We obtain segregated ON and OFF regions in simple cell receptive field. Our modeling study supports the experimental findings, suggesting the role of synaptic efficacy and the role of spatial signaling. We find that using this model we obtain simple cell RF, even for positively correlated activity of ON/OFF cells. We also compare different mechanism of finding the response of cortical cell and study their possible role in the sharpening of orientation selectivity. We find that degree of selectivity improvement in individual cells varies from case to case depending upon the structure of RF field and type of sharpening mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065705000104DOI Listing

Publication Analysis

Top Keywords

simple cell
16
receptive field
12
hetero-synaptic interactions
12
field structure
8
orientation selectivity
8
modeling study
8
role synaptic
8
synaptic efficacy
8
experimental findings
8
cell receptive
8

Similar Publications

Whilst severe liver dysfunction is rarely encountered at the time of diagnosis for patients with acute myeloid leukemia (AML), mild elevations aminotransferase (<5 times the upper limit of normal) may be more frequently seen. Liver dysfunction at the time of diagnosis of AML is a parameter that requires investigation and can assist the clinicians in predicting prognosis. The aim of the present study was to investigate liver dysfunction at the time of diagnosis using the assoicated parameters in patients with AML.

View Article and Find Full Text PDF

Optical diffraction tomography using a self-reference module.

Biomed Opt Express

January 2025

Department of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland.

Optical diffraction tomography enables label-free, 3D refractive index (RI) imaging of biological samples. We present a novel, cost-effective approach to ODT that employs a modular design incorporating a self-reference holographic capture module. This two-part system consists of an illumination module and a capture module that can be seamlessly integrated with any life-science microscope using an automated alignment protocol.

View Article and Find Full Text PDF

Resistive random access memory (ReRAM) holds promise for building computing-in-memory (CIM) architectures to execute machine learning (ML) applications. However, existing ReRAM technology faces challenges such as cell and cycle variability, read-disturb and limited endurance, necessitating improvements in devices, algorithms and applications. Understanding the behaviour of ReRAM technologies is crucial for advancement.

View Article and Find Full Text PDF

Masked cryptic kidney injury (MCKI), an early stage of acute kidney injury (AKI), is challenging to detect and diagnose, especially in the modern context where toxic substances, such as surfactants, are increasingly misused. Consequently, there is an urgent need for methods for the visual diagnosis of MCKI. In this study, we synthesized environmentally friendly spirulina-derived carbon dots (SpiCDs) using spirulina as a biobased raw material through a simple hydrothermal process.

View Article and Find Full Text PDF

A Stable Zn(II) Metal-Organic Framework as Turn-On and Blue-Shift Fluorescence Sensor for Amino Acids and Dipicolinic Acid in Living Cells or Using Aerosol Jet Printing.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.

Amino acids and dipicolinic acid (DPA) are important biomarkers for identifying human health. Establishing rapid, accurate, sensitive, and simple assays is essential for disease prevention and early diagnosis. In this work, a novel Zn(II) metal-organic framework (MOF) with the formula {[Zn(μ-OH)(BTDI)(dpp)]·dpp·4HO·2DMF} (, where denotes Jiangxi University of Science and Technology, HBTDI = 5,5'-(benzo[][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid; dpp = 1,3-di(4-pyridyl)propane) was successfully synthesized via a mixed-ligands strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!