From simple reflexes in lower animals to complex motor patterns and learning and memory in higher animals, all nervous system functions hinge upon fundamental, albeit specialized, neuronal units termed synapses. The term synapse denotes the structural and functional building block upon which pivots the enormous information-processing capabilities of our brain. It is the neuronal communications through synapses that ultimately determine who we are and how we react and adapt to our ever-changing environment. Synapses are not only the epic center of our intellect, but they also control myriad traits of our personality, ranging from sinfulness to sainthood (see, e.g., Hamer 2004). Simply put-we are what our synapses deem us to be (LeDoux 2003)! Notwithstanding the reasoning that some aspects of the synaptic arrangement may be genetically hardwired, an overwhelming body of knowledge does nevertheless provide ample plausible evidence that synapses are highly plastic entities undergoing rapid adaptive changes throughout life. It is this adaptability that endows our brain with its "uncanny" powers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1073858404274110 | DOI Listing |
Commun Biol
January 2025
Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France.
MoeA, also known as gephyrin in higher eukaryotes, is an enzyme essential for molybdenum cofactor (Moco) biosynthesis and involved in GABA and GlyR receptor clustering at the synapse in animals. We recently discovered that Actinobacteria have a repurposed version of MoeA (Glp) linked to bacterial cell division. Since MoeA exists in all domains of life, our study explores how it gained multifunctionality over time.
View Article and Find Full Text PDFSci Rep
January 2025
College of Basic Medicine, Shanxi University of Chinese Medicine, No. 121 DaXue Street, Jinzhong, 030619, China.
The anti-inflammatory effect of phellodendrine (PHE), derived from Phellodendri Chinensis Cortex, has been verified in previous studies. Major depressive disorder (MDD) is associated with immune dysregulation and inflammatory processes. This study aimed to explore the therapeutic effects of PHE on MDD through network pharmacology and experimental validation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Information Science and Technology, Fudan University, Shanghai 200433, China.
To date, various kinds of memristors have been proposed as artificial neurons and synapses for neuromorphic computing to overcome the so-called von Neumann bottleneck in conventional computing architectures. However, related working principles are mostly ascribed to randomly distributed conductive filaments or traps, which usually lead to high stochasticity and poor uniformity. In this work, a heterostructure with a two-dimensional WS monolayer and a ferroelectric PZT film were demonstrated for memristors and artificial synapses, triggered by in-plane ferroelectric polarization.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.
View Article and Find Full Text PDFJ Neurosci
January 2025
Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
The human hippocampus, essential for learning and memory, is implicated in numerous neurological and psychiatric disorders, each linked to specific neuronal subpopulations. Advancing our understanding of hippocampal function requires computational models grounded in precise quantitative neuronal data. While extensive data exist on the neuronal composition and synaptic architecture of the rodent hippocampus, analogous quantitative data for the human hippocampus remain very limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!