Might there be systematic differences in gene expression between neurons that undergo spontaneous replacement in the adult brain and those that do not? We first explored this possibility in the high vocal center (HVC) of male zebra finches by using a combination of neuronal tracers, laser capture microdissection, and RNA profiling. HVC has two kinds of projection neurons, one of which continues to be produced and replaced in adulthood. HVC neurons of the replaceable kind showed a consistent and robust underexpression of the deubiquitination gene ubiquitin carboxyl-terminal hydrolase (UCHL1) that is involved with protein degradation. Singing behavior, known to increase the survival of adult-born HVC neurons in birds, significantly up-regulated the levels of UCHL1 in the replaceable neurons but not in their equally active nonreplaceable counterparts. We then looked in the mouse brain and found relatively low UCHL1 expression in granule neurons of the hippocampus and olfactory bulb, two well characterized types of replaceable neurons in mammals. UCHL1 dysfunction has been associated with neurodegeneration in Parkinson's, Alzheimer's, and Huntington's disease patients. In all these instances, reduced UCHL1 function may jeopardize the survival of CNS neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1142397 | PMC |
http://dx.doi.org/10.1073/pnas.0503239102 | DOI Listing |
J Neurochem
January 2025
Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.
View Article and Find Full Text PDFPLoS One
January 2025
The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America.
Peripheral nerve injury (PNI) is characterized by a loss of cellular and axonal integrity, often leading to limited functional recovery and pain. Many PNIs are not amenable to repair with traditional techniques; however, cell therapies, particularly Schwann cells (SCs), offer the promise of neural tissue replacement and functional improvement. Exosomes, which carry cellular signaling molecules, can be secreted by SCs and have shown promise in PNI.
View Article and Find Full Text PDFJ Dev Orig Health Dis
January 2025
School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults.
View Article and Find Full Text PDFLife (Basel)
November 2024
Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain.
Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Psychiatry, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA.
Background/objectives: Learning is classically modeled to consist of an acquisition period followed by a mastery period when the skill no longer requires conscious control and becomes automatic. Dopamine neurons projecting to the ventral striatum (VS) produce a teaching signal that shifts from responding to rewarding or aversive events to anticipating cues, thus facilitating learning. However, the role of the dopamine-receptive neurons in the ventral striatum, particularly in encoding decision-making processes, remains less understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!