Sequence comparison across multiple organisms aids in the detection of regions under selection. However, resource limitations require a prioritization of genomes to be sequenced. This prioritization should be grounded in two considerations: the lineal scope encompassing the biological phenomena of interest, and the optimal species within that scope for detecting functional elements. We introduce a statistical framework for optimal species subset selection, based on maximizing power to detect conserved sites. Analysis of a phylogenetic star topology shows theoretically that the optimal species subset is not in general the most evolutionarily diverged subset. We then demonstrate this finding empirically in a study of vertebrate species. Our results suggest that marsupials are prime sequencing candidates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1142384 | PMC |
http://dx.doi.org/10.1073/pnas.0502790102 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
Strain NoAH (=KACC 23135=JCM 35999), a novel Gram-negative, motile bacterium with a rod-shaped morphology, was isolated from the zoo animal faecal samples, specifically the long-tailed goral species . The novel bacterial strain grew optimally in a nutrient broth medium under the following conditions: 1-2% (w/v) NaCl, pH 7-8 and 30 °C. The strain NoAH exhibited high tolerance to NaCl, with the ability to tolerate up to 7% (w/v) NaCl.
View Article and Find Full Text PDFChem Asian J
January 2025
Rheinisch-Westfalische Technische Hochschule Aachen, Organic Chemistry, Landoltw, 52074, Aachen, GERMANY.
Highly reactive oxygen and nitrogen species (ROS/RNS) play crucial roles in various pathological conditions. Among them, hypochlorous ion (OCl⁻), a potent ROS, is associated in numerous oxidative stress-related disorders. Elevated levels of OCl⁻ are thus recognized as a biomarker for diagnosing inflammatory conditions.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.
Efficient and stable nonprecious metal-based oxygen evolution reaction (OER) electrocatalysts are pivotal for water electrolysis technology. Herein, we are reporting an effective strategy for fabricating efficient Co-based OER electrocatalysts by low-level Fe doping in CoMoO to boost surface reconstruction and electronic modulation, which resulted in excellent OER electroactivity consequently. Our findings reveal that a mere 5.
View Article and Find Full Text PDFAnal Chem
January 2025
Rural Health Research Institute, Charles Sturt University, Orange, New South Wales 2800, Australia.
The detection and analysis of circulating cell-free nucleic acid (ccfNA) biomolecules are redefining a new era of molecular targeted cancer therapies. However, the clinical translation of electrochemical ccfNA biosensing remains hindered by unresolved challenges in analytical specificity and sensitivity. In this Perspective, we present a novel electrochemical framework for improving ccfNA biosensor performance by optimizing the critical electrode-biomolecules-electrolyte interfaces.
View Article and Find Full Text PDFmSystems
January 2025
Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
Average nucleotide identity (ANI) is a widely used metric to estimate genetic relatedness, especially in microbial species delineation. While ANI calculation has been well optimized for bacteria and closely related viral genomes, accurate estimation of ANI below 80%, particularly in large reference data sets, has been challenging due to a lack of accurate and scalable methods. To bridge this gap, we introduce MANIAC, an efficient computational pipeline optimized for estimating ANI and alignment fraction (AF) in viral genomes with divergence around ANI of 70%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!