Tor proteins are global regulators situated at the top of a signal transduction pathway conserved from yeast to humans. Specific inhibition of the two Saccharomyces cerevisiae Tor proteins by rapamycin alters many cellular processes and the expression of hundreds of genes. Among the regulated genes are those whose expression is activated by the GATA family transcription activator, Gln3. The extent of Gln3 phosphorylation has been thought to determine its intracellular localization, with phosphorylated and dephosphorylated forms accumulating in the cytoplasm and nucleus, respectively. Data presented here demonstrate that rapamycin and the glutamine synthetase inhibitor, methionine sulfoximine (MSX), although eliciting the same outcomes with respect to Gln3-Myc13 nuclear accumulation and nitrogen catabolite repression-sensitive transcription, generate diametrically opposite effects on Gln3-Myc13 phosphorylation. MSX increases Gln3-Myc13 phosphorylation and rapamycin decreases it. Gln3-Myc13 phosphorylation levels are regulated by at least three mechanisms as follows: (i) depends on Snf1 kinase as observed during carbon starvation, (ii) is Snf1-independent as observed during both carbon starvation and MSX treatment, and (iii) is rapamycin-induced dephosphorylation. MSX and rapamycin act additively on Gln3-Myc13 phosphorylation, but MSX clearly predominates. These results suggest that MSX- and rapamycin-inhibited proteins are more likely to function in separate regulatory pathways than they are to function tandemly in a single pathway as thought previously. Furthermore, as we and others have detected thus far, Gln3 phosphorylation/dephosphorylation is not a demonstrably required step in achieving Gln3 nuclear localization and nitrogen catabolite repression-sensitive transcription in response to MSX or rapamycin treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254499PMC
http://dx.doi.org/10.1074/jbc.M504052200DOI Listing

Publication Analysis

Top Keywords

gln3-myc13 phosphorylation
16
carbon starvation
12
methionine sulfoximine
8
transcription activator
8
activator gln3
8
saccharomyces cerevisiae
8
cerevisiae tor
8
tor proteins
8
nitrogen catabolite
8
catabolite repression-sensitive
8

Similar Publications

Intracellular localization of Saccharomyces cerevisiae GATA family transcription activator, Gln3, is used as a downstream readout of rapamycin-inhibited Tor1,2 control of Tap42 and Sit4 activities. Gln3 is cytoplasmic in cells provided with repressive nitrogen sources such as glutamine and is nuclear in cells growing with a derepressive nitrogen source such as proline or those treated with rapamycin or methionine sulfoximine (Msx). Although gross Gln3-Myc13 phosphorylation levels in wild type cells do not correlate with nitrogen source-determined intracellular Gln3-Myc13 localization, the phosphorylation levels are markedly influenced by several environmental perturbations.

View Article and Find Full Text PDF

Tor proteins are global regulators situated at the top of a signal transduction pathway conserved from yeast to humans. Specific inhibition of the two Saccharomyces cerevisiae Tor proteins by rapamycin alters many cellular processes and the expression of hundreds of genes. Among the regulated genes are those whose expression is activated by the GATA family transcription activator, Gln3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!