Background And Aims: Fitting the parameters of models of plant organ growth is a means to investigate how environmental conditions affect plant architecture. The aim of this article is to evaluate some non-linear methods for fitting the parameters of multi-phase models of the kinetics of extension of plant organs such as laminae, sheaths and internodes. *

Methods: A set of computational procedures was developed allowing parameter-fitting of multi-phase models, using the maximum likelihood criterion, in which phases are identified with reference to ontogenic processes. Two bootstrap methods were compared to assess the precision of the estimates of fitted parameters, and of functions of these parameters such as the final leaf length, and the duration and rate of the rapid extension phase. Methods were applied to an experimental dataset, representing the kinetics of laminae, sheaths and internodes along the maize shoot, for two contrasting densities. *

Key Results: A set of multi-phase models was proposed to describe the extension of laminae, sheaths and internodes along the shoot. The distinguishable phases differed between laminae, sheaths and internodes. For sheaths and laminae, but not for internodes, the same model could be fitted to all phytomers along the shoot. The variation of parameters along the shoot and between density treatments, as well as derived functions such as the durations of the phases of extension, are presented for laminae. It was the duration of the fast extension period, rather than its rate, which determined the difference in final length between treatments. *

Conclusions: Such methods permit a large degree of objectivity and facilitate the analysis of such rather complicated but co-ordinated datasets. The work also illustrates some natural limitations of maximum likelihood methods, and viable ways of overcoming them by including a priori knowledge in the model fitting method are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246818PMC
http://dx.doi.org/10.1093/aob/mci159DOI Listing

Publication Analysis

Top Keywords

laminae sheaths
16
sheaths internodes
16
maximum likelihood
12
multi-phase models
12
bootstrap methods
8
plant organ
8
organ growth
8
fitting parameters
8
methods
6
laminae
6

Similar Publications

Layer-specific anatomical and physiological features of the retina's neurovascular unit.

Curr Biol

January 2025

Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20814, USA. Electronic address:

The neurovascular unit (NVU), comprising vascular, glial, and neural elements, supports the energetic demands of neural computation, but this aspect of the retina's trilaminar vessel network is poorly understood. Only the innermost vessel layer-the superficial vascular plexus (SVP)-is associated with astrocytes, like brain capillaries, whereas radial Müller glia interact with vessels in the other layers. Using serial electron microscopic reconstructions from mouse and primate retina, we find that Müller processes cover capillaries in a tessellating pattern, mirroring the wrapping of brain capillaries by tiled astrocytic endfeet.

View Article and Find Full Text PDF

The unique mating behavior of Bittacidae has been extensively studied, yet the mechanisms underlying internal sperm transport and temporary storage before mating remain enigmatic. Herein, we aim to elucidate these mechanisms by investigating the fine structure of the ejaculatory duct, which serves for sperm transport and temporary storage. The ultrastructure of the ejaculatory duct of Terrobittacus implicatus (Mecoptera: Bittacidae) was examined by light and transmission electron microscopy for the first time in this study.

View Article and Find Full Text PDF

The rice R2R3 MYB transcription factor FOUR LIPS connects brassinosteroid signaling to lignin deposition and leaf angle.

Plant Cell

November 2024

Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

Leaf angle is an important agronomic trait for crop architecture and yield. In rice (Oryza sativa), the lamina joint is a unique structure connecting the leaf blade and sheath that determines leaf angle. Brassinosteroid (BR) signaling involving GLYCOGEN SYNTHASE KINASE-3 (GSK3)/SHAGGY-like kinases and BRASSINAZOLE-RESISTANT1 (BZR1) has a central role in regulating leaf angle in rice.

View Article and Find Full Text PDF

Intracortical myelin across laminae in adult individuals with 47,XXX: a 7 Tesla MRI study.

Cereb Cortex

August 2024

Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands.

47,XXX (Triple X syndrome) is a sex chromosome aneuploidy characterized by the presence of a supernumerary X chromosome in affected females and is associated with a variable cognitive, behavioral, and psychiatric phenotype. The effect of a supernumerary X chromosome in affected females on intracortical microstructure is currently unknown. Therefore, we conducted 7 Tesla structural MRI and compared T1 (ms), as a proxy for intracortical myelin (ICM), across laminae of 21 adult women with 47,XXX and 22 age-matched typically developing females using laminar analyses.

View Article and Find Full Text PDF

Tensile properties of glaucomatous human sclera, optic nerve, and optic nerve sheath.

Biomech Model Mechanobiol

December 2024

Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095-7002, USA.

We characterized the tensile behavior of sclera, optic nerve (ON), and ON sheath in eyes from donors with glaucoma, for comparison with published data without glaucoma. Twelve freshly harvested eyes were obtained from donors with history of glaucoma, of average age 86 ± 7 (standard deviation) years. Rectangular samples were taken from anterior, equatorial, posterior, and peripapillary sclera, and ON sheath, while ON was in native form and measured using calipers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!