Elemental analysis of proteins by microPIXE.

Prog Biophys Mol Biol

Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.

Published: October 2005

The identification and quantification of metals bound to proteins is a crucial problem to be solved in structural biology. This paper describes the technique of particle induced X-ray emission with a microfocused beam (microPIXE) as a tool for analysing the elemental composition of liquid and crystalline protein samples. The proton beam induces characteristic X-ray emission from all elements in the protein, which can be interpreted in terms of the metal content of the protein molecule with a relative accuracy of between 10% and 20%. The compelling advantage of this method is that the sulphur atoms in the methionines and cysteines of the protein provide an internal calibration of the number of protein molecules present so that systematic errors are minimised and the technique is entirely internally self-consistent. This is achieved by the simultaneous measurement of the energy of backscattered protons (Rutherford backscattering), to enable us to determine the matrix composition and thickness, and so correct the PIXE data for the self-absorption of X-rays in the sample. The theoretical background to the technique is described, and the technical and experimental procedures are outlined. Examples of recent measurements are given which have informed a range of investigations in structural biology. The use of the technique is increasing and we envisage that future developments will enable it to become a routine high-throughput method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbiomolbio.2004.09.005DOI Listing

Publication Analysis

Top Keywords

structural biology
8
x-ray emission
8
protein
5
elemental analysis
4
analysis proteins
4
proteins micropixe
4
micropixe identification
4
identification quantification
4
quantification metals
4
metals bound
4

Similar Publications

Reactions of SleC, Its Structure and Inhibition in Mitigation of Spore Germination in .

J Am Chem Soc

January 2025

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Spore germination in is initiated by a cascade of activities of several proteins that culminates in the activation of SleC, a cell-wall-processing enzyme. We report herein the details of the enzymatic activities of SleC by the use of synthetic peptidoglycan fragments and of spore sacculi. The reactions include the formation of 1,6-anhydromuramate─a hallmark of lytic transglycosylase activity─as well as a muramate hydrolytic product, both of which proceed through the same transient oxocarbenium species.

View Article and Find Full Text PDF

Biomimetic Silk Nanoparticle Manufacture: Calcium Ion-Mediated Assembly.

ACS Biomater Sci Eng

January 2025

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.

Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.

View Article and Find Full Text PDF

In the ancient microbial Wood-Ljungdahl pathway, carbon dioxide (CO) is fixed in a multistep process that ends with acetyl-coenzyme A (acetyl-CoA) synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). In this work, we present structural snapshots of the CODH/ACS from the gas-converting acetogen , characterizing the molecular choreography of the overall reaction, including electron transfer to the CODH for CO reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site, and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer, and protect the reaction intermediates.

View Article and Find Full Text PDF

Studying the functional consequences of structural variants (SVs) in mammalian genomes is challenging because (i) SVs arise much less commonly than single-nucleotide variants or small indels and (ii) methods to generate, map, and characterize SVs in model systems are underdeveloped. To address these challenges, we developed Genome-Shuffle-seq, a method that enables the multiplex generation and mapping of thousands of SVs (deletions, inversions, translocations, and extrachromosomal circles) throughout mammalian genomes. We also demonstrate the co-capture of SV identity with single-cell transcriptomes, facilitating the measurement of SV impact on gene expression.

View Article and Find Full Text PDF

Type 4 pili (T4P) are multifunctional filaments involved in adhesion, surface motility, biofilm formation, and horizontal gene transfer. These extracellular polymers are surface-exposed and, therefore, act as antigens. The human pathogen Neisseria gonorrhoeae uses pilin antigenic variation to escape immune surveillance, yet it is unclear how antigenic variation impacts most other functions of T4P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!