Analysis of gene and protein expression during monocyte-macrophage differentiation and cholesterol loading--cDNA and protein array study.

Atherosclerosis

Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, Kuopio University, P.O. Box 1627, FIN-70211 Kuopio, Finland.

Published: June 2005

Background: To better understand the role of macrophages in atherogenesis and to find new strategies to prevent their harmful effects, more information is needed about their gene and protein expression patterns in atherogenic conditions.

Methods: We analyzed gene and protein expression changes during monocyte-macrophage differentiation and lipid-loading by cDNA arrays and antibody-based protein arrays, respectively.

Results: It was found that early response genes, such as transcription factors, were upregulated early during monocyte-macrophage differentiation, while genes functioning in cell proliferation, migration, inflammation and lipid metabolism were activated later during macrophage differentiation. When comparing results from cDNA and antibody arrays, it become evident that changes at the protein levels were not always predicted by changes at the mRNA level. This discrepancy may be due to the different transcript variants that exist for distinct genes, posttranslational modifications and different turnover rates for mRNAs and proteins of distinct genes. When combining cDNA and protein array results with RT-PCR, it was found that CD36, COX-2, and several factors regulating cell signaling, such as Cdk-1, TFII-I, NEMO-like kinase, Elf-5 and TRADD were strongly upregulated both at the mRNA and protein levels.

Conclusions: Time-dependency of the activation of the early response genes and genes functioning in inflammation, lipid metabolism and cell proliferation and migration, is an important feature of the macrophage differentiation. It was also evident that several novel transcription factors were activated during lipid-loading. It is concluded that cDNA and protein arrays will be useful for the identification of genes that are potential targets for therapeutic interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2004.12.023DOI Listing

Publication Analysis

Top Keywords

gene protein
12
protein expression
12
monocyte-macrophage differentiation
12
protein
9
protein array
8
protein arrays
8
early response
8
response genes
8
transcription factors
8
genes functioning
8

Similar Publications

A novel model of central precocious puberty disease: Paternal MKRN3 gene-modified rabbit.

Animal Model Exp Med

January 2025

Guangdong Medical Laboratory Animal Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Background: Makorin ring finger protein 3 gene (MKRN3) gene mutation is the most common genetic cause of central precocious puberty (CPP) in children. Due to the lack of ideal MKRN3-modified animal model (MKRN3-modified mice enter puberty only 4-5 days earlier than normal mice), the related research is limited.

Methods: Therefore, the MKRN3-modified rabbit was developed using CRISPR (clustered regularly interspaced short palindromic repeats) gene editing technology.

View Article and Find Full Text PDF

Aim: Snakes exhibit remarkable physiological shifts when their large meals induce robust postprandial growth after prolonged fasting. To understand the regulatory mechanisms underlying this rapid metabolic transition, we examined the regulation of protein synthesis in pythons, focusing on processes driving early postprandial tissue remodeling and growth.

Methods: Using the SUnSET method with puromycin labeling, we measured in vivo protein synthesis in fasting and digesting snakes at multiple post-feeding intervals.

View Article and Find Full Text PDF

Background: The breakthrough discovery of novel biomarkers with prognostic and diagnostic value enables timely medical intervention for the survival of patients diagnosed with gastric cancer (GC). Typically, in studies focused on biomarker analysis, highly connected nodes (hubs) within the protein-protein interaction network (PPIN) are proposed as potential biomarkers. However, this study revealed an unexpected finding following the clustering of network nodes.

View Article and Find Full Text PDF

Integrative Transcriptome-Wide Association Study With Expression Quantitative Trait Loci Colocalization Identifies a Causal VAMP8 Variant for Nasopharyngeal Carcinoma Susceptibility.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China.

Nasopharyngeal carcinoma (NPC) is an Asia-prevalent malignancy, yet its genetic underpinnings remain incompletely understood. Here, a transcriptome-wide association study (TWAS) is conducted on NPC, leveraging gene expression prediction models based on epithelial tissues and genome-wide association study (GWAS) summary statistics from 1577 NPC cases and 6359 controls of southern Chinese descent. The TWAS identifies VAMP8 on chromosome 2p11.

View Article and Find Full Text PDF

Background: Trinucleotide repeat expansions are an emerging class of genetic variants associated with various movement disorders. Unbiased genome-wide analyses can reveal novel genotype-phenotype associations and provide a diagnosis for patients and families.

Objective: The aim was to identify the genetic cause of a severe progressive movement disorder phenotype in 2 affected brothers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!