Drosophila mojavensis and Drosophila arizonae are species of cactophilic flies that share a recent duplication of the alcohol dehydrogenase (Adh) locus. One paralog (Adh-2) is expressed in adult tissues and the other (Adh-1) in larvae and ovaries. Enzyme activity measurements of the ADH-2 amino acid polymorphism in D. mojavensis suggest that the Fast allozyme allele has a higher activity on 2-propanol than 1-propanol. The Fast allele was found at highest frequency in populations that utilize hosts with high proportions of 2-propanol, while the Slow allele is most frequent in populations that utilize hosts with high proportions of 1-propanol. This suggests that selection for ADH-2 allozyme alleles with higher activity on the most abundant alcohols is occurring in each D. mojavensis population. In the other paralog, ADH-1, significant differences between D. mojavensis and D. arizonae are associated with a previously shown pattern of adaptive protein evolution in D. mojavensis. Examination of protein sequences showed that a large number of amino acid fixations between the paralogs have occurred in catalytic residues. These changes are potentially responsible for the significant difference in substrate specificity between the paralogs. Both functional and sequence variation within and between paralogs suggests that Adh has played an important role in the adaptation of D. mojavensis and D. arizonae to their cactophilic life.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-294X.2005.02532.xDOI Listing

Publication Analysis

Top Keywords

alcohol dehydrogenase
8
amino acid
8
higher activity
8
populations utilize
8
utilize hosts
8
hosts high
8
high proportions
8
mojavensis arizonae
8
mojavensis
6
activity
4

Similar Publications

Characterization of human alcohol dehydrogenase 4 and aldehyde dehydrogenase 2 as enzymes involved in the formation of 5-carboxylpirfenidone, a major metabolite of pirfenidone.

Drug Metab Dispos

January 2025

Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.

Pirfenidone (PIR) is used in the treatment of idiopathic pulmonary fibrosis. After oral administration, it is metabolized by cytochrome P450 1A2 to 5-hydroxylpirfenidone (5-OH PIR) and further oxidized to 5-carboxylpirfenidone (5-COOH PIR), a major metabolite excreted in the urine (90% of the dose). This study aimed to identify enzymes that catalyze the formation of 5-COOH PIR from 5-OH PIR in the human liver.

View Article and Find Full Text PDF

Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide is a crucial coenzyme in cellular metabolism and is implicated in various diseases. This work introduces an electrochemical bioanalytical method utilizing solution-phase formate dehydrogenase (CbFDH) for detecting its oxidized form (NAD) in human blood plasma samples. The detection mechanism involves the catalytic conversion of NAD to NADH, facilitated by CbFDH in the presence of formate.

View Article and Find Full Text PDF

Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene , which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes.

View Article and Find Full Text PDF

With the rapid advancement of proteomics, numerous scholars have investigated the intricate relationships between plasma proteins and various diseases. Therefore, this study aims to elucidate the relationship between BDH1 and type 2 diabetes using Mendelian randomization (MR) and to identify novel targets for the prevention and treatment of type 2 diabetes through proteomics. This study primarily employed the Mendelian Randomization (MR) method, leveraging genetic data from numerous large-scale, publicly accessible genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!