Migration patterns among global populations of the pathogenic fungus Mycosphaerella graminicola.

Mol Ecol

Institute for Plant Sciences, Phytopathology Group, Federal Institute of Technology, ETH-Zentrum, LFW, Universitätstrasse 2, 8092, Zürich, Switzerland.

Published: June 2005

DNA sequences from five nuclear loci and data from three microsatellites were collected from 360 isolates representing 14 globally distributed populations of the plant pathogenic fungus Mycosphaerella graminicola. Haplotype networks were constructed for the five sequence loci and population subdivision was assessed using Hudson's permutation test. Migration estimates were calculated using six regional populations for both the sequence and microsatellite loci. While subdivision was detected among the six regional populations, significant gene flow was indicated among some of the populations. The European and Israeli populations contributed the majority of historical immigrants to the New World. Migration estimates for microsatellite loci were used to infer more recent migration events among specific New World populations. We conclude that gene flow was an important factor in determining the demographic history of Mycosphaerella graminicola.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-294X.2005.02536.xDOI Listing

Publication Analysis

Top Keywords

mycosphaerella graminicola
12
pathogenic fungus
8
fungus mycosphaerella
8
migration estimates
8
regional populations
8
microsatellite loci
8
gene flow
8
populations
7
migration
4
migration patterns
4

Similar Publications

Since the domestication of plants, pathogenic fungi have consistently threatened crop production, evolving genetically to develop increased virulence under various selection pressures. Understanding their evolutionary trends is crucial for predicting and designing control measures against future disease outbreaks. This paper reviews the evolution of fungal pathogens from natural habitats to agricultural settings, focusing on eight significant phytopathogens: , , spp.

View Article and Find Full Text PDF

Plant pathogens pose significant threats to global cereal crop production, particularly for essential crops like rice and wheat, which are fundamental to global food security and provide nearly 40% of the global caloric intake. As the global population continues to rise, increasing agricultural production to meet food demands becomes even more critical. However, the production of these vital crops is constantly threatened by phytopathological diseases, especially those caused by fungal pathogens such as , the causative agent of rice blast disease, , responsible for head blight (FHB) in wheat, and , the source of Septoria tritici blotch (STB).

View Article and Find Full Text PDF

A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis.

PLoS Pathog

January 2025

Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.

Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN).

View Article and Find Full Text PDF

Thermal Adaptation in Worldwide Collections of a Major Fungal Pathogen.

Mol Plant Microbe Interact

January 2025

ETH Zurich Department of Environmental Systems Science, Plant Pathology Group, Institute of Integrative Biology, Zurich, Zürich, Switzerland.

Adaptation to new climates poses a significant challenge for plant pathogens during range expansion, highlighting the importance of understanding their response to climate to accurately forecast future disease outbreaks. The wheat pathogen is ubiquitous across most wheat production regions distributed across diverse climate zones. We explored the genetic architecture of thermal adaptation using a global collection of 411 strains that were phenotyped across a wide range of temperatures and then included in a genome-wide association study.

View Article and Find Full Text PDF

Background: Septoria tritici blotch (STB) is one of the most damaging wheat diseases worldwide, and the development of resistant cultivars is of paramount importance for sustainable crop management. However, the genetic basis of the resistance present in elite wheat cultivars remains largely unknown, which limits the implementation of this strategy. A collection of 285 wheat cultivars originating mostly from France was challenged with ten Zymoseptoria tritici isolates at the seedling stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!