A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The mechanism of inactivation of 3-hydroxyanthranilate-3,4-dioxygenase by 4-chloro-3-hydroxyanthranilate. | LitMetric

3-Hydroxyanthranilate-3,4-dioxygenase (HAD) is a non-heme Fe(II) dependent enzyme that catalyzes the oxidative ring-opening of 3-hydroxyanthranilate to 2-amino-3-carboxymuconic semialdehyde. The enzymatic product subsequently cyclizes to quinolinate, an intermediate in the biosynthesis of nicotinamide adenine dinucleotide. Quinolinate has also been implicated in important neurological disorders. Here, we describe the mechanism by which 4-chloro-3-hydroxyanthranilate inhibits the HAD catalyzed reaction. Using overexpressed and purified bacterial HAD, we demonstrate that 4-chloro-3-hydroxyanthranilate functions as a mechanism-based inactivating agent. The inactivation results in the consumption of 2 +/- 0.8 equiv of oxygen and the production of superoxide. EPR analysis of the inactivation reaction demonstrated that the inhibitor stimulated the oxidation of the active site Fe(II) to the catalytically inactive Fe(III) oxidation state. The inactivated enzyme can be reactivated by treatment with DTT and Fe(II). High resolution ESI-FTMS analysis of the inactivated enzyme demonstrated that the inhibitor did not form an adduct with the enzyme and that four conserved cysteines were oxidized to two disulfides (Cys125-Cys128 and Cys162-Cys165) during the inactivation reaction. These results are consistent with a mechanism in which the enzyme, complexed to the inhibitor and O2, generates superoxide which subsequently dissociates, leaving the inhibitor and the oxidized iron center at the active site.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0473455DOI Listing

Publication Analysis

Top Keywords

inactivation reaction
8
demonstrated inhibitor
8
active site
8
inactivated enzyme
8
enzyme
5
mechanism inactivation
4
inactivation 3-hydroxyanthranilate-34-dioxygenase
4
3-hydroxyanthranilate-34-dioxygenase 4-chloro-3-hydroxyanthranilate
4
4-chloro-3-hydroxyanthranilate 3-hydroxyanthranilate-34-dioxygenase
4
3-hydroxyanthranilate-34-dioxygenase non-heme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!