The presence of two types of well-characterised Ca2+ release channels, namely IP3-receptors (Ins(1,4,5)P3Rs) and ryanodine-receptors (RyRs), was detected in the salivary glands secretory cells of Chironomus plumosus L. For this aim different blockators and activators of these Ca2+ -transport systems were used. The conditions for permeabilization of these cells by saponine were experimentally chosen for their more intensive action. It was shown that IP3 decreased calcium content in saponine-treated gland tissue by (41.14 +/- 11.75)%. The effect of IP3 was not observed under condition of heparin and eosin Y presence in the incubation medium, but heparin alone did not cause any action on calcium content in saponine-treated gland tissue. The observed effects of IP3 are supposed to be the evidences of Ins (1,4,5)P3Rs presence in the intracellular membrane of this object. It was also shown that calcium content in intact gland tissue increased by (67.12 +/- 22.60)% in presence of heparin (500 mkg/ml) in the incubation medium. This effect of heparin was also observed with presence of verapamil (100 mkM) and eosin Y (5, 20 mkM) in incubation medium. So, this effect is not connected with function of voltage-gated Ca2+ -channels and Ca2+ -pumps. Ryanodine in concentration of 5nM decreased calcium content in saponine-treated gland tissue by (35.18 +/- 3.87)% but it caused the increase of calcium content at high concentration (500 nM) by (40.72 +/- 12.52)%. It improved the presence of RyRs in intracellular membrane of secretory cells of this object. Besides, these channels, perhaps, belong to "non-sensitive" to caffeine, because caffeine did not affect calcium content in the gland tissue neither in presence nor with absence of eosin Y.

Download full-text PDF

Source

Publication Analysis

Top Keywords

calcium content
24
gland tissue
20
secretory cells
12
content saponine-treated
12
saponine-treated gland
12
incubation medium
12
ca2+ release
8
release channels
8
salivary glands
8
glands secretory
8

Similar Publications

The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.

View Article and Find Full Text PDF

The inadequate thermal insulation of the building envelope contributes significantly to the high power consumption of air conditioners in houses. A crucial factor in raising a building's energy efficiency involves utilizing bricks with high thermal resistance. This issue is accompanied by another critical challenge: recycling and disposing of waste in a way that is both economically and environmentally beneficial, including using it to fuel industrial growth, in order to reduce the harmful effects of waste on the environment as waste generation in our societies grows.

View Article and Find Full Text PDF

In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.

View Article and Find Full Text PDF

This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.

View Article and Find Full Text PDF

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!