AI Article Synopsis

  • The study aimed to create an automated imaging tool that addresses the anatomical differences in elderly and demented patients while minimizing registration errors during spatial normalization.
  • Twenty subjects underwent MRI imaging, with their brain scans divided into 68 regions; automated measures from three different volumetric models were compared to manually obtained data to evaluate accuracy.
  • The results showed a strong correlation between the automated tool's results and manual measurements, indicating that the tool is accurate and useful for individual assessments and regional analysis in dementia research.

Article Abstract

Objectives: To develop an automated imaging assessment tool that accommodates the anatomic variability of the elderly and demented population as well as the registration errors occurring during spatial normalization.

Methods: 20 subjects with Alzheimer's disease (AD), mild cognitive impairment, or normal cognition underwent MRI brain imaging and had their 3D volumetric datasets manually partitioned into 68 regions of interest (ROI) termed sub-volumes. Gray matter (GM), white matter (WM), and cerebral spinal fluid (CSF) voxel counts were then made in the subject's native space for comparison against automated volumetric measures within three sub-volume probabilistic atlas (SVPA) models. The three SVPAs were constructed using 12 parameter affine (12 p), 2nd order (2nd), and 6th order (6th) transforms derived from registering the manually partitioned scans into a Talairach compatible AD population-based target. The three SVPA automated measures were compared to the manually derived measures in the 20 subjects' native space with a "jack-knife" procedure in which each subject was assessed by an SVPA they did not contribute toward constructing.

Results: The mean left and right GM ratio (GM ratio = [GM + CSF] / CSF) "r values" for the 3 SVPAs compared to the manually derived ratios across the 68 ROIs were 0.85 for the 12p SVPA, 0.88 for the 2nd SVPA, and 0.89 for the 6th SVPA. The mean left and right WM ratio (WM ratio = [WM + CSF] / CSF) "r values" for the 3 SVPAs being 0.84 for the 12p SVPA, 0.86 for the 2nd SVPA, and 0.88 for the 6th SVPA.

Conclusion: We have constructed, from an elderly and demented cohort, an automated brain volumetric tool that has excellent accuracy compared to a manual gold standard and is capable of regional hypothesis testing and individual patient assessment compared to a population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2005.03.031DOI Listing

Publication Analysis

Top Keywords

elderly demented
12
automated brain
8
demented population
8
sub-volume probabilistic
8
manually partitioned
8
native space
8
svpa
8
compared manually
8
manually derived
8
left ratio
8

Similar Publications

Background: Applying single-cell RNA sequencing (scRNA-seq) to the study of neurodegenerative disease has propelled the field towards a more refined cellular understanding of Alzheimer's disease (AD); however, directly linking protein pathology to transcriptomic changes has not been possible at scale. Recently, a high-throughput method was developed to generate high-quality scRNA-seq data while retaining cytoplasmic proteins. Tau is a cytoplasmic protein and when hyperphosphorylated is integrally involved in AD progression.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Laboratory for Neuropathology, KU Leuven, Leuven, Belgium.

Background: In 43-63% of symptomatic Alzheimer's disease (AD) patients, there is an observed accumulation of misfolded alpha-synuclein (αSyn). Two primary αSyn subtypes have been identified based on the underlying spreading pattern of this pathology: caudo-rostral and amygdala-predominant. Interactions between pathological TDP-43, Tau, and αSyn can aggravate their spread and aggregation.

View Article and Find Full Text PDF

Background: Glial cells exhibit distinct transcriptional responses to β-amyloid pathology in Alzheimer's disease (AD). While sophisticated single-cell based methods have revealed heterogeneous glial subpopulations in the human AD brain, the histological localization of these multicellular responses to AD pathology has not been fully characterized due to the loss of spatial information. Here, we combined spatial transcriptomics (ST) with immunohistochemistry to explore the molecular mechanisms in the neuritic plaque niche.

View Article and Find Full Text PDF

Background: Numerous studies have highlighted the role of oxidative stress in Alzheimer's disease (AD) development. Yet, the alignment of systemic and central oxidative stress biomarkers is unclear across diverse populations in the AD continuum. This study aims to assess protein damage levels in plasma and cerebrospinal fluid (CSF) within the AD continuum.

View Article and Find Full Text PDF

Background: The recent European-ancestry based genome-wide association study (GWAS) of Alzheimer disease (AD) by Bellenguez2022 has identified 75 significant genetic loci, but only a few have been functionally mapped to effector gene level. Besides the large-scale RNA expression, protein and metabolite levels are key molecular traits bridging the genetic variants to AD risk, and thus we decided to integrate them into the genetic analysis to pinpoint key proteins and metabolites underlying AD etiology. Few studies have generated more than one layer of post-transcriptional phenotypes, limiting the scale of biological translation of disease modifying treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!