Proteomic and biochemical analysis of the mouse liver microsomes.

Toxicol In Vitro

V.N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 119121, Pogodinskaya St., 10, Moscow, Russia.

Published: September 2005

The efficiency of the proteomic approach for the revelation of proteins, including components of the liver microsomal monooxygenase system (cytochromes b5 and P450) was demonstrated. The liver microsomes and their ghosts (i.e. membranes devoid of "ballast" proteins) were prepared from the control and phenobarbital-treated mice. Microsomes and their ghosts were characterized using the conventional biochemical assay and analysed by one- and two-dimensional electrophoresis (1-DE and 2-DE, respectively) coupled with MALDI-TOF peptide mass fingerprinting procedure. Catalytic activity of cytochromes P450 was measured using specific fluorogenic substrates for CYP1A, CYP2A, CYP2B and CYP2C families. The protein composition of control and phenobarbital-induced ghosts was analysed. The proteomic 2D-based protein separation method enabled us to reveal up to 1005 proteins, the majority of them being soluble. Among the 34 identified proteins, the cytochrome b5-like protein was revealed; however, cytochromes P450 appeared to be undetectable under 2-DE separation conditions. The separation of microsomal ghosts proteins by 1-DE, followed by mass-spectrometric analysis of bands from the 45 to 66 kDa gel range made it possible to identify hydrophobic proteins including cytochromes P450 (CYP2A4 and CYP2A5) and dimethylaniline monooxygenase. The high O-deethylation rate of 7-ethoxycoumarin-a substrate for rodent CYPs 2A and 2B, in particular for CYP2A5-was observed, in agreement with the results of mass-spectrometric identification. Collectively, the data obtained indicate that a combination of enzyme activity assays and various protein separation techniques coupled with mass-spectrometric protein identification allows a more comprehensive insight into the machinery of the cellular detoxifying system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2005.03.016DOI Listing

Publication Analysis

Top Keywords

cytochromes p450
16
liver microsomes
8
proteins including
8
microsomes ghosts
8
protein separation
8
proteins
6
protein
5
proteomic biochemical
4
biochemical analysis
4
analysis mouse
4

Similar Publications

Parkinson's disease (PD) and insomnia are prevalent neurological disorders, with emerging evidence implicating tryptophan (TRP) metabolism in their pathogenesis. However, the precise mechanisms by which TRP metabolism contributes to these conditions remain insufficiently elucidated. This study explores shared tryptophan metabolism-related genes (TMRGs) and molecular mechanisms underlying PD and insomnia, aiming to provide insights into their shared pathogenesis.

View Article and Find Full Text PDF

Rickets in children usually present with skeletal manifestations. However, they can also rarely present with extraskeletal manifestations, one of them being respiratory insufficiency. We present an unusual case of a girl in early childhood with respiratory insufficiency, which turned out to be due to the underlying vitamin D-dependent rickets (VDDR).

View Article and Find Full Text PDF

Customizing Tacrolimus Dosing in Kidney Transplantation: Focus on Pharmacogenetics.

Ther Drug Monit

February 2025

Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.

Different polymorphisms in genes encoding metabolizing enzymes and drug transporters have been associated with tacrolimus pharmacokinetics. In particular, studies on CYP3A4 and CYP3A5, and their combined cluster have demonstrated their significance in adjusting tacrolimus dosing to minimize under- and overexposure thereby increasing the proportion of patients who achieve tacrolimus therapeutic target. Many factors influence the pharmacokinetics of tacrolimus, contributing to inter-patient variability affecting individual dosing requirements.

View Article and Find Full Text PDF

The appetite of honeybees for food is crucial to their survival and reproduction, as they sustain their entire colony by collecting pollen and nectar for nutrients. Dopamine, an important neurotransmitter, regulates appetite and satiety. However, how dopamine regulates honeybee foraging behavior remains unexplored.

View Article and Find Full Text PDF

The most frequent type of leukemia in Africa is chronic myeloid leukemia (CML). The genetic background of the rarer Philadelphia chromosome (Ph) Ph-ve (BCR-ABL-ve) subform of CML is largely unknown in African patients. Therefore, in this study, we aimed to investigate the role of CYP1A1 and 2D6 SNPs in the pathogenesis of Ph-ve CML in the Sudanese population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!