Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
ERK5-MEF2C has been implicated in many aspects of neuronal survival and neuroprotection. Neurotrophic effects have been considered as one of the mechanisms in therapeutic electroconvulsive shock (ECS). To investigate whether ECS activates ERK5-MEF2C, we examined the phosphorylation of ERK5, along with its downstream molecule MEF2C, after ECS in the rat frontal cortex and hippocampus. Increased phosphorylation of ERK5 was observed immediately after ECS, but was barely detectable from 2 min after ECS in both the frontal cortex and the hippocampus. The level of MEF2C phosphorylation was decreased immediately after ECS in both regions. It was increased from 2 min and maintained until 10 min after ECS in the frontal cortex, but it returned to the basal level from 2 min after ECS in the hippocampus. Taken together, these results suggest that ECS can regulate the region-specific activity of ERK5-MEF2C pathways in the rat brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pnpbp.2005.04.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!