Determination of carbon monoxide (CO) in rodent tissue: effect of heme administration and environmental CO exposure.

Anal Biochem

Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305-5208, USA.

Published: June 2005

Carbon monoxide (CO), produced endogenously during heme degradation, is considered a messenger molecule in vascular and neurologic tissues. To study this role, it is important to determine CO concentration in target tissues pre- and post-perturbations. Here, we describe a sensitive and reproducible method, which is linear and accurate, and provide some examples of its application for quantitation of CO concentrations in tissues pre- and post-perturbations. Tissues from adult rats and mice were sonicated (20% w/w), and volumes representing 0.04-8 mg fresh weight (FW) were incubated at 0 degrees C for 30 min with sulfosalicylic acid. CO liberated into the headspace was quantitated by gas chromatography. Tissue CO concentrations (mean+/-SD, pmol CO/mg FW) were as follows: blood (47+/-10, 45+/-5), muscle (4+/-4, 10+/-1), kidney (5+/-2, 7+/-2), heart (6+/-3, 6+/-1), spleen (11+/-3, 6+/-1), liver (4+/-1, 5+/-1), intestine (2+/-1, 4+/-2), lung (2+/-1, 3+/-1), testes (1+/-1, 2+/-1), and brain (2+/-1, 2+/-0) in untreated rat (n=3) and mouse (n=5), respectively. Between the rat and the mouse, only CO concentrations in the muscle and spleen were significantly different (p0.05). Endogenous CO generation, after administration of heme arginate to mice (n=3), increased CO concentrations by 0-43 pmol/mg FW. Exposure of mice (n=3) to 500 ppm CO for 30 min yielded significantly elevated CO concentrations by 4-2603 pmol/mg FW in all tissues over the native state. While blood had the highest CO concentration for all conditions, muscle, kidney, heart, spleen, and liver, all rich in hemoglobin and/or other CO-binding hemoproteins, also contained substantial CO concentrations. Intestine, lung, testes, and brain contained the lowest CO concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2005.03.019DOI Listing

Publication Analysis

Top Keywords

carbon monoxide
8
tissues pre-
8
pre- post-perturbations
8
mice n=3
8
concentrations
7
tissues
5
determination carbon
4
monoxide rodent
4
rodent tissue
4
tissue heme
4

Similar Publications

In the ancient microbial Wood-Ljungdahl pathway, carbon dioxide (CO) is fixed in a multistep process that ends with acetyl-coenzyme A (acetyl-CoA) synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). In this work, we present structural snapshots of the CODH/ACS from the gas-converting acetogen , characterizing the molecular choreography of the overall reaction, including electron transfer to the CODH for CO reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site, and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer, and protect the reaction intermediates.

View Article and Find Full Text PDF

Introduction: Hormonal contraceptives (HCs), which contain synthetic forms of estrogen (i.e., ethinyl estradiol) and/or progesterone (i.

View Article and Find Full Text PDF

Aim: To evaluate the correlation between semi-quantitative analyses and visual scores of pulmonary perfusion Single Photon Emission Computed Tomography (SPECT)/ Computed Tomography (CT) imaging and pulmonary function test parameters (PFTs) in patients with interstitial lung diseases (ILDs).

Materials And Methods: This retrospective study included 35 patients with ILDs from China-Japan Friendship Hospital between January 2020 and December 2022. All patients underwent pulmonary perfusion SPECT/CT imaging and a pulmonary function test.

View Article and Find Full Text PDF

Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria.

Nat Chem Biol

January 2025

Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.

Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain.

View Article and Find Full Text PDF

Utilization of Chlorella vulgaris methyl ester blend with diethyl ether to mitigate emissions of an unaltered single cylinder ci engine.

Environ Sci Pollut Res Int

January 2025

Engine Testing Laboratory, Department of Automobile Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.

The present work emphasizes the viability of methyl ester production, characterization, and utilization of third-generation biofuel from Chlorella vulgaris microalgae. The presence of methyl oleate (CHO) in the Chlorella vulgaris methyl ester (CVME) algae signifies the existence of higher oxidation stability and prone to peroxidation. The single-stage transesterified CVME algae contains majorly (C-H) functional group trailed by (C = O), (C-O), (O-CH), (C-O-C) with the elemental compositions of 66.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!