The hydrolysis of three alkoxysilane coupling agents, gamma-methacryloxypropyltrimethoxysilane (MPS), gamma-aminopropyltriethoxysilane (APS), and gamma-diethylenetriaminopropyltrimethoxysilane (TAS), was carried out in an ethanol/water (80/20) solution and followed by 1H, 13C, and 29Si NMR spectroscopy, which showed that its rate increased in the order MPS < APS < TAS. The formation of the silanol groups was followed by their self-condensation to generate oligomeric structure. APS and MPS only gave soluble products, whereas colloidal particles precipitated in the medium when TAS was hydrolyzed. Pristine and hydrolyzed MPS were then adsorbed onto a cellulose substrate and thereafter a thermal treatment at 110-120 degrees C under reduced pressure was applied to the modified fibers to create permanent bonding of the coupling agent at their surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2005.03.070 | DOI Listing |
Langmuir
January 2025
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.
Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.
View Article and Find Full Text PDFChemSusChem
January 2025
Swinburne University of Technology - Hawthorn Campus: Swinburne University of Technology, Chemistry and Biotechnology, AUSTRALIA.
The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Schuster Building, Manchester M13 9PL, UK. Electronic address:
Hypothesis: Bioengineered monoclonal antibodies (mAbs) have gained significant recognition as medical therapies. However, during processing, storage and use, mAbs are susceptible to interfacial adsorption and desorption, leading to structural deformation and aggregation, and undermining their bioactivity. To suppress antibody surface adsorption, nonionic surfactants are commonly used in formulation.
View Article and Find Full Text PDFLangmuir
January 2025
Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Aichi, Japan.
In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Chemical Engineering, Urmia University of Technology, Urmia, 17165‑57166, Iran.
In this research, 3-(trimethoxysilyl)propyl methacrylate (MPS) silane agent was applied to modify the extracted wheat straw (WS) cellulose as a natural biopolymer. Polyacrylonitrile (PAN) was attached to the MPS-modified WS (MPS-WS) via in-situ polymerization to form PAN-WS biocomposite. AO-WS amidoximated biocomposite adsorbent was synthesized through amidoxime reaction and the effects of different parameters including agitation speed, metal ion concentration, and adsorbent dosage on its efficiency of Pb(II) removal were investigated using the Taguchi experimental design method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!