Host-range, a fundamental property of a bacterial plasmid, is primarily determined by the plasmid replication system. To investigate the basis of the restricted host-range of the well-studied F-plasmid of Escherichia coli, we characterized in vitro the interactions of the host DnaA initiation protein and DnaB helicase from Pseudomonas aeruginosa and Pseudomonas putida with the replication origin, oriS, and initiation protein, RepE, of the RepFIA replicon. The results presented here show that a pre-priming complex can form at the F-origin with the replication proteins from the non-native hosts in the presence of RepE. However, RepE cannot form a stable complex with DnaB of P. aeruginosa or P. putida but does stably interact with E. coli DnaB. This unstable association may affect the ability of F to replicate in Pseudomonas. In addition, replication studies in vivo suggest that inefficient expression of the RepE initiation protein from its native promoter in Pseudomonas is a factor in restricting its host-range. This, however, is not the only barrier to F replication, as mini-F derivatives with an alternative promoter for RepE expression do not replicate in P. putida and are not stably maintained in P. aeruginosa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plasmid.2004.11.001 | DOI Listing |
Anal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States of America.
Dysregulated eIF4E-dependent translation is a central driver of tumorigenesis and therapy resistance. eIF4E binding proteins (4E-BP1/2/3) are major negative regulators of eIF4E-dependent translation that are inactivated in tumors through inhibitory phosphorylation or downregulation. Previous studies have linked PP2A phosphatase(s) to activation of 4E-BP1.
View Article and Find Full Text PDFAnnu Rev Med
January 2025
Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; email:
Hepatorenal syndrome-acute kidney injury (HRS-AKI) occurs in the setting of advanced chronic liver disease, portal hypertension, and ascites. HRS-AKI is found in ∼20% of patients presenting to the hospital with AKI, but it may coexist with other causes of AKI and/or with preexisting chronic kidney disease, thereby making the diagnosis challenging. Novel biomarkers such as urinary neutrophil gelatinase-associated lipocalin may be useful.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.
The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.
View Article and Find Full Text PDFMol Cancer Res
January 2025
Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Malignant neoplasms arise within a region of chronic inflammation caused by tissue injuries. Inflammation is a key factor involved in all aspects of tumorigenesis including initiation, proliferation, invasion, angiogenesis, and metastasis. Interleukin-1 (IL-1) plays critical functions in tumor development with influencing the tumor microenvironment and promoting cancer progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!