Domestic and international arrivals of NOBOB (no ballast on board) vessels to lower Chesapeake Bay.

Mar Pollut Bull

Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, 4600 Elkhorn Avenue, Norfolk, VA 23529, USA.

Published: May 2005

In examining ship-mediated biological invasions, most research and treatment development has focused on ballast water. Another vector that has gained attention recently is vessels arriving in a "no ballast on board" (NOBOB) condition. Such ships retain relatively small, unpumpable volumes of water and sediment in their ballast tanks. Nonetheless, these unpumpable portions can represent great ecological risk. This scenario is relevant in the Great Lakes, which have experienced a dramatic series of introductions, despite most vessels arriving there as NOBOBs since 1994. We examined shipping patterns of NOBOBs arriving to lower Chesapeake Bay to begin evaluating their risk of biopollution. Only 14% of ships arrive as NOBOBs, and of those, 17% depart to another port in the upper bay. Most NOBOBs arrive from or leave for other US ports; proximate trans-Atlantic crossings are few. Given the nature of their operations, we conclude NOBOBs may represent a risk for aquatic nuisance species invasions to Chesapeake Bay.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2005.01.015DOI Listing

Publication Analysis

Top Keywords

chesapeake bay
12
lower chesapeake
8
vessels arriving
8
nobobs
5
domestic international
4
international arrivals
4
arrivals nobob
4
ballast
4
nobob ballast
4
ballast board
4

Similar Publications

Data on dissolved phase water concentrations of polychlorinated biphenyls (PCBs) from 32 locations across the U.S. were compiled from reports, Web sites, and peer-reviewed papers, spanning 1979-2020, resulting in 5132 individual samples.

View Article and Find Full Text PDF

The hydrologic benefits of catchment-scale implementation of stormwater control measures (SCMs) in mitigating the adverse effects of urbanization are well established. Nevertheless, recent studies indicate that the Unified Stormwater Sizing Criteria (USSC) regulations, mandating the combined use of distributed and storage stormwater controls, do not protect channel stability, despite their effectiveness in reducing runoff from impervious surfaces. The USSC are the basis of SCM design in 11 U.

View Article and Find Full Text PDF

Genome-resolved adaptation strategies of to changing conditions in the Chesapeake and Delaware Bays.

Appl Environ Microbiol

January 2025

Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA.

Unlabelled: The abundant and metabolically versatile aquatic bacterial order, , influences marine biogeochemical cycles. We assessed metagenome-assembled genome (MAG) abundance, estimated growth rates, and potential and expressed functions in the Chesapeake and Delaware Bays, two important US estuaries. Phylogenomics of draft and draft/closed genomes from this study and others placed 46 nearly complete MAGs from these bays into 11 genera, many were not well characterized.

View Article and Find Full Text PDF
Article Synopsis
  • Many agricultural watersheds depend on voluntary management practices (MPs) to improve water quality by reducing nutrient and sediment runoff, but the effectiveness of these practices is unclear.
  • Analysis of water-quality data from three prioritized Chesapeake Bay watersheds (Smith Creek, Upper Chester River, and Conewago Creek) from 1985 to 2020 reveals inconsistent outcomes, with some areas seeing no decrease in nutrient or sediment loads despite an increase in MPs.
  • The study suggests that while MPs may have prevented further water-quality decline, real improvements will likely require lowering manure and fertilizer applications, underscoring the need for long-term monitoring to evaluate MP effectiveness.
View Article and Find Full Text PDF

Objective: The dinoflagellate Alexandrium monilatum forms blooms during summer in tributaries of the lower Chesapeake Bay. Questions persist about the potential for A. monilatum to negatively affect aquatic organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!