In the present study, uranium absorption capacity of Bacillus pantothenticus and Bacillus megaterium, previously isolated from the environmental air surrounding the 60Co gamma source, is reported. Pseudomonas putida and Pseudomonas chlororaphis were used as reference species. Concerning uranium uptake, the local species were more efficient than the reference ones. The maximum uptake of uranium was achieved by B. megaterium and P. chlororaphis at 20 microg U mL(-1) and by B. pantothenticus at 30 microg U mL(-1). The transmission electron microscope examination indicated that uranium was absorbed onto the cell surface of the studied isolates. Furthermore, the increase in biomass concentration has shown an increase in the total amount of uranium removed. Dead cells exhibited uranium uptake to the same or greater extent than living cells. B. pantothenticus, P. putida, and P. chlororaphis achieved maximum uptake at pH 4.0, whereas for B. megaterium it was at pH 6.0. Temperature had an important role in uranium absorption of all the studied species except B. pantothenticus. Metabolic inhibitors did not affect the uptake.
Download full-text PDF |
Source |
---|
Int J Biol Macromol
December 2024
State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
With the development of the nuclear industry, the direct discharge of uranium-containing wastewater has become increasingly harmful to the environment. A novel graphene oxide-supported and phosphoric-crosslinked chitosan gel bead (C-PGCB) with excellent uranium uptake capability was successfully fabricated to treat uranium-containing wastewater. The experimental results showed that the introduction of PO and CO bonds through phosphoric acid crosslinking could greatly improve the capturing ability of chitosan-based materials, which could reach 97.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
Widespread geogenic uranium (U) contamination of Indian groundwaters is of serious concern; yet little is known of the dominant forms and release mechanisms of U in these aquifers. Interestingly, manganese (Mn)-rich aquifers, highly buffered by dissolved inorganic carbon (DIC) and saturated with rhodochrosite [MnCO], have shown low U (
Appl Radiat Isot
December 2024
Department of Applied Physic, ETS Arquitectura, University of Seville, 41013, Sevilla, Spain.
Arid and semi-arid climates give rise to drought stress in plants, implying an increased uptake of radionuclides through both leaves and roots. This study was carried out in the Tabernas Desert (Almería, Spain), classified as an arid climate. Seventeen plants were analyzed, collected from four areas of the study site.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China. Electronic address:
As the fundamental resource in nuclear energy, uranium is a sword of two sides, due to its radioactive character that could cause severe impact to the environment and living creatures once released by accident. However, limited by the passive ion transport, the currently available uranium adsorbents still suffer from low adsorption kinetics and capacity. Here, we report a self-driven modular micro-reactor composed of magnetizable ion-exchange resin and adsorbents that can be used to dynamically remove uranium from nonmarine waters.
View Article and Find Full Text PDFChemosphere
November 2024
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. Electronic address:
Composite membranes incorporated with high-performance adsorbents are promising for uranium removal. The impact of speciation and ionic strength on uranium adsorption by zeolites was investigated in both static adsorption and composite membrane filtration. Zeolites with high Si/Al ratios exhibited the highest uranium adsorption capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!