The antifilaricidal drugs ivermectin (IVM), diethylcarbamazine (DEC), and albendazole (ALB), used alone or in combinations against infective third-stage larvae (L3) of nocturnally subperiodic (NSP) Brugia malayi (Narathiwat strain), were tested in vitro for sensitivity, for 7 days. IVM alone reduced larval motility at concentrations of 10(-7), 10(-6), and 10(-5) M on day 3. DEC alone also had this effect at concentrations of 10(-6). 10(-5), and 10(-4) M on day 2. ALB alone did not have this effect throughout the experiment, at various concentrations. However, it had greater effect when used in combination with either DEC or IVM. The result also indicated that DEC or IVM, when used in combination with ALB at concentrations of 10(-6) M/10(-6) M, and 10(-5) M/10(-5) M was effectively better than each drug used alone at those concentrations. When both drug combinations were compared, ALB/DEC seemed to be more effective than ALB/IVM at a concentration of 10(-6) M/10(-6) M on day 3. Although IVM and DEC can reduce larval motility when used alone or in combination with ALB, they cannot kill these larvae in an in vitro cultivation, even at a high concentration (10(-5) M).
Download full-text PDF |
Source |
---|
Funct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFSmall
January 2025
School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH (UiO) to form UiO@Au-Pd (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC).
View Article and Find Full Text PDFAnn Med
December 2025
Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
Background: Non-small cell lung cancer (NSCLC) is a fatal disease, and radioresistance is an important factor leading to treatment failure and disease progression. The objective of this research was to detect radioresistance-related genes (RRRGs) with prognostic value in NSCLC.
Methods: The weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were performed to identify RRRGs using expression profiles from TCGA and GEO databases.
J Clin Med
January 2025
Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
: Diabetes is a well-recognised factor inducing a plethora of corneal alterations ranging from dry eye to reduced corneal sensibility, epithelial defects, and reduced cicatrisation. This cohort study aimed to assess the efficacy of a novel ophthalmic solution combining cross-linked hyaluronic acid (CHA), chondroitin sulfate (CS), and inositol (INS) in managing diabetes-induced corneal alterations. Specifically, it evaluated the solution's impact on the tear breakup time (TBUT), the ocular surface disease index (OSDI), and corneal sensitivity after three months of treatment.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.
We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!