Evidence suggests membrane bound F(1)F(0)-ATPase complexes form stable associations such that dimers can be retrieved from detergent lysates of mitochondria isolated from a range of sources including algae, higher plants, yeast and bovine heart, and plant chloroplasts. The physiological relevance of these interactions is not clear but may be connected with the formation and structure of mitochondrial cristae. We sought to demonstrate, in vivo, the association of F(1)F(0)-ATPases in yeast cells co-expressing two b subunits each fused at its C-terminus to a GFP variant appropriate for fluorescence resonance energy transfer (FRET; BFP as the donor and GFP as the acceptor fluorophore). Both subunit b-GFP and b-BFP fusions were assembled into functional complexes. FRET was observed from enzyme complexes in molecular proximity in respiring cells providing the first demonstration of the association, in vivo, of F(1)F(0)-ATPase complexes. Moreover, FRET was observed within cells lacking the dimer specific subunit e, indicating structured associations can occur within the inner membrane in the absence of subunit e.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10863-005-4128-8 | DOI Listing |
Protein Sci
February 2025
Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
The chemokine XC motif chemokine ligand 1 (XCL1) is an unusually specialized member of a conserved family of around 50 small, secreted proteins that are best known for their ability to stimulate the directional migration of cells. All chemokines adopt a very similar folded structure that binds a specific G protein-coupled receptor (GPCR), and most chemokines bind extracellular matrix glycosaminoglycans, often in a dimeric or oligomeric form. Owing in part to the lack of a disulfide bond that is conserved in all other chemokines, XCL1 interconverts between two distinct structures with distinct functions.
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Department of Thoracic Surgery, The Second People's Hospital of Liaocheng, Linqing, Shandong, 252600, People's Republic of China.
Objective: This study aimed to investigate the levels of coagulation parameters in elderly patients with severe pneumonia and analyse their correlation with disease severity and prognosis.
Methods: A retrospective study was conducted on 207 elderly patients (aged ≥60 years) with severe pneumonia admitted to our hospital between January 2022 and December 2023. Demographic data, clinical characteristics and coagulation parameters, including prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time and fibrinogen (FIB), were collected.
J Phys Chem C Nanomater Interfaces
January 2025
School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
Understanding the role of structural and environmental dynamics in the excited state properties of strongly coupled chromophores is of paramount importance in molecular photonics. Ultrafast, coherent, and multidimensional spectroscopies have been utilized to investigate such dynamics in the simplest model system, the molecular dimer. Here, we present a half-broadband two-dimensional electronic spectroscopy (HB2DES) study of the previously reported ultrafast symmetry-breaking charge separation (SB-CS) in the subphthalocyanine oxo-bridged homodimer μ-OSubPc.
View Article and Find Full Text PDFClin Transl Med
January 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
Background: Numerous pathogenic variants causing human oocyte maturation arrest have been reported on the primate-specific TUBB8 gene. The main etiology is the dramatic reduction of tubulin α/β dimer, but still large numbers of variants remain unexplained.
Methods: Using microinjection mRNA and genome engineering to reintroduce the conserved pathogenic missense variants into oocytes or in generating TUBB8 variant knock-in mouse models, we investigated that the human deleterious variants alter microtubule nucleation and spindle assembly during meiosis.
Cell Commun Signal
January 2025
Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
Cardiolipin, a unique phospholipid predominantly present in the inner mitochondrial membrane, is critical for maintaining mitochondrial integrity and function. Its dimeric structure and role in supporting mitochondrial dynamics, energy production, and mitophagy make it indispensable for skeletal muscle health. This review provides a comprehensive overview of cardiolipin biosynthesis, remodeling processes, and essential functions within mitochondria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!