Our earlier study showed that GM-CSF has the potential not only to prevent, but also to suppress, experimental autoimmune thyroiditis (EAT). GM-CSF-induced EAT suppression in mice was accompanied by an increase in the frequency of CD4(+)CD25(+) regulatory T cells that could suppress mouse thyroglobulin (mTg)-specific T cell responses in vitro, but the underlying mechanism of this suppression was not elucidated. In this study we show that GM-CSF can induce dendritic cells (DCs) with a semimature phenotype, an important characteristic of DCs, which are known to play a critical role in the induction and maintenance of regulatory T cells. Adoptive transfer of CD4(+)CD25(+) T cells from GM-CSF-treated and mTg-primed donors into untreated, but mTg-primed, recipients resulted in decreased mTg-specific T cell responses. Furthermore, lymphocytes obtained from these donors and recipients after adoptive transfer produced significantly higher levels of IL-10 compared with mTg-primed, untreated, control mice. Administration of anti-IL-10R Ab into GM-CSF-treated mice abrogated GM-CSF-induced suppression of EAT, as indicated by increased mTg-specific T cell responses, thyroid lymphocyte infiltration, and follicular destruction. Interestingly, in vivo blockade of IL-10R did not affect GM-CSF-induced expansion of CD4(+)CD25(+) T cells. However, IL-10-induced immunosuppression was due to its direct effects on mTg-specific effector T cells. Taken together, these results indicated that IL-10, produced by CD4(+)CD25(+) T cells that were probably induced by semimature DCs, is essential for disease suppression in GM-CSF-treated mice.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.174.11.7006DOI Listing

Publication Analysis

Top Keywords

regulatory cells
12
mtg-specific cell
12
cell responses
12
cd4+cd25+ cells
12
cd4+cd25+ regulatory
8
cells
8
play critical
8
critical role
8
experimental autoimmune
8
autoimmune thyroiditis
8

Similar Publications

Dental pulp stem cells hold significant prospects for tooth regeneration and repair. However, a comprehensive understanding of the molecular differences between dental pulp stem cells (DPSC, from permanent teeth) and stem cells from human exfoliated deciduous teeth (SHED, from deciduous teeth) remains elusive, which is crucial for optimizing their therapeutic potential. To address this gap, we employed a novel data-independent acquisition (DIA) proteomics approach to compare the protein expression profiles of DPSC and SHED.

View Article and Find Full Text PDF

Human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) encompasses a heterogeneous group of malignancies characterized by diverse clinical manifestations. Notably, HPV-positive HNSCC exhibits a more favorable prognosis, particularly when the virus is transcriptionally active. This study aimed to elucidate the role of key transcription factors in activating the HPV long control region (LCR), responsible for its oncogenic potential.

View Article and Find Full Text PDF

Introduction: The interferon regulatory factor 7 (IRF7), a member of the IRF family of transcription factors, plays a major role in the regulation of numerous aspects of an immune response and has increasingly been surveyed to determine the aetiology and pathogenesis of systemic sclerosis (SSc). Objective: This study aimed to investigate the transcriptional levels of IRF7 mRNA in peripheral blood mononuclear cells (PBMCs) and the impact of promoter methylation on IRF7 mRNA expression in SSc patients compared to healthy controls.

Methods: PBMCs were obtained from confirmed 40 naïve SSc cases and 20 healthy controls for IRF-7 expression and methylation analysis.

View Article and Find Full Text PDF

Bone remodeling is a continuous cyclic process that maintains and regulates bone structure and strength. The disturbance of bone remodeling leads to a series of bone metabolic diseases. Recent studies have shown that citrate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, plays an important role in bone remodeling.

View Article and Find Full Text PDF

Unravelling the impact of SARS-CoV-2 on hemostatic and complement systems: a systems immunology perspective.

Front Immunol

January 2025

School of Interdisciplinary Engineering and Sciences (SINES), Department of Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.

The hemostatic system prevents and stops bleeding, maintaining circulatory integrity after injury. It directly interacts with the complement system, which is key to innate immunity. In coronavirus disease 2019 (COVID-19), dysregulation of the hemostatic and complement systems has been associated with several complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!