A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strategies to configure image analysis algorithms for clinical usage. | LitMetric

Strategies to configure image analysis algorithms for clinical usage.

J Am Med Inform Assoc

Institut für Medizinische Informatik, RWTH Aachen, Aachen D-52027, Germany.

Published: October 2005

Medical imaging informatics must exceed the mere development of algorithms. The discipline is also responsible for the establishment of methods in clinical practice to assist physicians and improve health care. From our point of view, it is commonly accepted that model-based analysis of medical images is superior to other concepts, but only a few applications are found in daily clinical use. The gap between development of model-based image analysis and its routine application can be addressed by identifying four necessary transfer steps: formulation, parameterization, instantiation, and validation. Usually, computer scientists formulate the model and define its parameterization, i.e., configure a model to handle a selected subset of clinical data. During instantiation, the algorithm adapts the model to the actual data, which is validated by physicians. Since medical a priori knowledge and particular knowledge on technical details are required for parameterization and validation, these steps are considered to be bottlenecks. In this paper, we propose general schemes that allow an application- or image-specific parameterization to be performed by medical users. Combining noncontextual and contextual approaches, we also suggest a reliable scheme that allows application-specific validation, even if a gold standard is unavailable. To emphasize our point of view, we provide examples based on unsupervised segmentation in medical imagery, which is one of the most difficult tasks. Following the proposed schemes, an exact delineation of cells in micrographs is parameterized, validated, and successfully established in daily clinical use, while automatic determination of body regions in radiographs cannot be configured to support reliable and robust clinical use. The results stress that parameterization and validation must be based on clinical data that show all potential variations and artifact sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1205598PMC
http://dx.doi.org/10.1197/jamia.M1652DOI Listing

Publication Analysis

Top Keywords

image analysis
8
point view
8
daily clinical
8
clinical data
8
parameterization validation
8
clinical
7
medical
5
parameterization
5
strategies configure
4
configure image
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!