Decreased bone mass, osteoporosis, and increased fracture rates are common skeletal complications in patients with insulin-dependent diabetes mellitus (IDDM; type I diabetes). IDDM develops from little or no insulin production and is marked by elevated blood glucose levels and weight loss. In this study we use a streptozotocin-induced diabetic mouse model to examine the effect of type I diabetes on bone. Histology and microcomputed tomography demonstrate that adult diabetic mice, exhibiting increased plasma glucose and osmolality, have decreased trabecular bone mineral content compared with controls. Bone resorption could not completely account for this effect, because resorption markers (tartrate-resistant acid phosphatase 5b, urinary deoxypyridinoline excretion, and tartrate-resistant acid phosphatase 5 mRNA) are unchanged or reduced at 2 and/or 4 wk after diabetes induction. However, osteocalcin mRNA (a marker of late-stage osteoblast differentiation) and dynamic parameters of bone formation were decreased in diabetic tibias, whereas osteoblast number and runx2 and alkaline phosphatase mRNA levels did not differ. These findings suggest that the final stages of osteoblast maturation and function are suppressed. We also propose a second mechanism contributing to diabetic bone loss: increased marrow adiposity. This is supported by increased expression of adipocyte markers [peroxisome proliferator-activated receptor gamma2, resistin, and adipocyte fatty acid binding protein (alphaP2)] and the appearance of lipid-dense adipocytes in diabetic tibias. In contrast to bone marrow, adipose stores at other sites are depleted in diabetic mice, as indicated by decreased body, liver, and peripheral adipose tissue weights. These findings suggest that IDDM contributes to bone loss through changes in marrow composition resulting in decreased mature osteoblasts and increased adipose accumulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1242186 | PMC |
http://dx.doi.org/10.1210/en.2004-1677 | DOI Listing |
Adv Healthc Mater
January 2025
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
Macrophage infiltration and activation is a key factor in the progression of diabetic nephropathy (DN). However, aerobic glycolysis induced by m6A methylation modification plays a key role in M1-type activation of macrophages, but the specific mechanism remains unclear in DN. In this study, the expression of m6A demethylase Fto in bone marrow derived macrophages and primary kidney macrophages from db/db mice.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Purpose: To optimize a 100 ms pulse for producing CEST MRI contrast and evaluate in mice.
Methods: A gradient ascent algorithm was employed to generate a family of 100 point, 100 ms pulses for use in CEST pulse trains (proton resonance enhancement for CEST imaging and shift exchange). Gradient ascent optimizations were performed for exchange rates = 500, 1500, 2500, 3500, and 4500 s; and labile proton offsets (Δω) = 9.
Diabetes Obes Metab
January 2025
The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is mainly secreted by the liver, and plays a crucial role in lipid metabolism disorder. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) can regulate lipid metabolism through various pathways, including reducing visceral fat accumulation, modulating serum lipoprotein levels and alleviating hepatic steatosis. However, the specific regulatory mechanisms remain unclear.
View Article and Find Full Text PDFAnal Cell Pathol (Amst)
January 2025
Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
Fibroblasts play a crucial role in diabetic wound healing, and their senescence is the cause of delayed wound repair. It was reported that fibroblasts can secrete exosomes that can mediate a vital role in diabetic complications. Our purpose is to examine the biological function of high glucose (HG)-induced senescent fibroblasts from the perspective of exosomes and reveal the mechanism at cellular and animal levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!