Responses of toll-like receptors (TLR3 and TLR5), lysozyme, and insulin-like growth factor-I (IGF-I) to experimental challenge with virulent Edwardsiella ictaluri were measured in back-cross hybrid (F1 male (blue x channel) x female channel) catfish. The resistance levels to E. ictaluri and host response mechanisms of back-cross hybrids are unknown. Fish were challenged with virulent E. ictaluri and sampled pre-challenge, 2 h and 2, 5, 8, 14, and 21 days post-challenge. Levels of mRNA expression of two toll-like receptors (TLR3 and TLR5) in liver, kidney, spleen, and stomach, plasma lysozyme activity, and circulating IGF-I levels were measured at each timepoint. Throughout challenge, TLR3 was expressed at higher levels than TLR5 in liver (P=0.0011) and kidney (P=0.0007) whereas TLR5 was more highly expressed than TLR3 in stomach (P=0.0032). TLR3 was upregulated in comparison to non-exposed controls in liver (P=0.0015) and stomach (P<0.0001) on day 14 and TLR5 was upregulated in liver (P=0.0175) on days 2 through 8. Plasma lysozyme activity peaked on day 5 (P<0.001) and IGF-I levels significantly decreased on days 2 through 14 (P<0.0001). TLR expression patterns suggest that both TLR3 and TLR5 may play a role in host response to bacterial challenge. Plasma lysozyme activity also increased and circulating IGF-I decreased in response to the presence of the pathogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2005.03.005 | DOI Listing |
Immunohorizons
January 2025
Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.
Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.
View Article and Find Full Text PDFNoncoding RNA Res
February 2025
Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
Objectives: Globally, hepatocellular Carcinoma (HCC) ranks seventh in women's cancer and fifth in men's cancer. Early identification can minimize mortality and morbidity. MicroRNAs and Toll-like receptors have been suggested as potential new biomarkers for HCC; Therefore, we explored Toll-like receptor 4 (TLR-4) and miRNA 15b-5p as new non-invasive HCC biomarkers and early detection approaches.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
Toll-Like Receptors (TLRs) is a pattern recognition receptor that connects innate and adaptive immunity and participates in inflammatory responses play a key role in common autoimmune diseases such as Rheumatoid Arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, and Sjögren's syndrome (SS) by participating in antigen recognition, immune cell activation, and inflammatory factor release. Due to the multi-component and multi-target characteristics of traditional Chinese medicine (TCM), the role of TCM active ingredients acting on TLRs has been widely studied. This article describes the relationship between TLR and four autoimmune diseases, as well as a review of the efficacy of TLR intervention by active ingredients of traditional Chinese medicine.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, No.137 LiYuShan Road Xinjiang Province, Urumqi, 830000, China.
Although low-dose lactulose has shown a good theoretical foundation for the treatment of ulcerative colitis (UC) in previous studies, the exact effects and mechanism remain unclear. The rats were randomly distributed into 5 groups, i.e.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA.
Polymeric nanoparticles (NPs) are promising tools used for immunomodulation and drug delivery in various disease contexts. The interaction between NP surfaces and plasma-resident biomolecules results in the formation of a biomolecular corona, which varies patient-to-patient and as a function of disease state. This study investigates how the progression of acute systemic inflammatory disease influences NP corona compositions and the corresponding effects on innate immune cell interactions, phenotypes, and cytokine responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!