The hot nonperturbative gluon plasma is an almost ideal colored liquid.

Phys Rev Lett

Institut für Theoretische Physik, Universität Giessen, 35392 Giessen, Germany.

Published: May 2005

We study properties of a gluon plasma above the critical temperature Tc in a generalized quasiparticle approach with a Lorentz spectral function. The model parameters are determined by a fit of the entropy s to lattice QCD data. The effective degrees of freedom are found to be rather heavy and of a sizable width. With the spectral width being closely related to the interaction rate, we find a large effective cross section, which is comparable to the typical distance squared of the quasiparticles. This suggests that the system should be viewed as a liquid as also indicated by an estimate of the plasma parameter Gamma. Furthermore, within the quasiparticle approach we find a very low viscosity to entropy ratio, eta/s approximately 0.2 for T > 1.05 Tc, supporting the recent conjecture of an almost ideal quark-gluon liquid seen at RHIC.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.94.172301DOI Listing

Publication Analysis

Top Keywords

gluon plasma
8
quasiparticle approach
8
hot nonperturbative
4
nonperturbative gluon
4
plasma ideal
4
ideal colored
4
colored liquid
4
liquid study
4
study properties
4
properties gluon
4

Similar Publications

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Relativistic theory of the viscosity of fluids across the entire energy spectrum.

Phys Rev E

November 2024

Department of Physics "A. Pontremoli," University of Milan, via Celoria 16, 20133 Milan, Italy and Institute of Theoretical Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.

The shear viscosity is a fundamental transport property of matter. Here we derive a general theory of the viscosity of gases based on the relativistic Langevin equation (deduced from a relativistic Lagrangian) and nonaffine linear response theory. The proposed relativistic theory is able to recover the viscosity of nonrelativistic classical gases, with all its key dependencies on mass, temperature, particle diameter, and Boltzmann constant, in the limit of Lorentz factor γ=1.

View Article and Find Full Text PDF

Plasma-Plasma Third Order Phase Transition from Type IIB Supergravity.

Phys Rev Lett

September 2024

Departamento de Física, Universidad de Concepción, Casilla, 160-C, Concepción, Chile.

We show that the planar, charged black hole in asymptotically anti-de Sitter spacetime, dual to the strongly coupled quark-gluon plasma thermal state of large N, SU(N), N=4 super Yang-Mills at finite chemical potential undergoes a third-order phase transition in the grand canonical ensemble to a hairy black hole of type IIB supergravity. The hairy phase is another strongly coupled fluid with a conformal equation of state and can be interpreted as another kind of quark-gluon plasma. This new quark-gluon plasma has less entropy and, therefore, seems to characterize some form of smooth hadronization.

View Article and Find Full Text PDF

In ultrarelativistic heavy-ion collisions, a plasma of deconfined quarks and gluons is formed within 1  fm/c of the nuclei's impact. The complex dynamics of the collision before ≈1  fm/c is often described with parametric models, which affect the predictivity of calculations. In this work, we perform a systematic analysis of LHC measurements from Pb-Pb collisions, by combining an ab initio model of the early stage of the collisions with a hydrodynamic model of the plasma.

View Article and Find Full Text PDF

We propose the angular distribution of lepton pairs produced in ultrarelativistic heavy-ion collisions as a probe of thermalization of the quark-gluon plasma. We focus on dileptons with invariant masses large enough that they are produced through quark-antiquark annihilation in the early stages of the collision. The angular distribution of the lepton in the rest frame of the pair then reflects the angular distribution of quark momenta.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!