Helicity-dependent total photoabsorption cross sections on the deuteron have been measured for the first time at ELSA (Bonn) in the photon energy range from 815 to 1825 MeV. Circularly polarized tagged photons impinging on a longitudinally polarized LiD target have been used together with a highly efficient 4pi detector system. The data around 1 GeV are not compatible with predictions from existing multipole analyses. From the measured energy range an experimental contribution to the GDH integral on the neutron of [33.9 +/- 5.5(stat) +/- 4.5(syst)] microb is extracted.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.94.162001DOI Listing

Publication Analysis

Top Keywords

photoabsorption cross
8
cross sections
8
815 1825
8
1825 mev
8
energy range
8
measurement helicity-dependent
4
helicity-dependent photoabsorption
4
sections neutron
4
neutron 815
4
mev helicity-dependent
4

Similar Publications

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

We report photodissociation processes and spectral measurements upon photoabsorption of size-selected cationic silver clusters, Ag, stored in an ion trap. The experiment shows that small clusters ( ≲ 15) dissociate upon one-photon absorption, whereas larger ones require multiple photons up to five in the present study. The emergence of multi-photon processes is attributed to collisional cooling in the presence of a buffer helium gas in the trap, which competes with size-dependent dissociation rates.

View Article and Find Full Text PDF

Symmetry Breaking in the Lowest-Lying Excited-State of CCl: Valence Shell Spectroscopy in the 5.0-10.8 eV Photon Energy Range.

Molecules

November 2024

Atomic and Molecular Collisions Laboratory, CEFITEC-Centre of Physics and Technological Research, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.

We report absolute high-resolution vacuum ultraviolet (VUV) photoabsorption cross-sections of carbon tetrachloride (CCl) in the photon energy range 5.0-10.8 eV (248-115 nm).

View Article and Find Full Text PDF
Article Synopsis
  • New organic luminophores called bis(tricyclic) aromatic enes (BAEs), featuring 6-6-6-membered frameworks like acridine and xanthene, display blue-to-green fluorescence in solid states and polymer films with high quantum yields.
  • These BAEs are synthesized through a palladium-catalyzed double cross-coupling reaction, producing microcrystals or powders that fluoresce brilliantly.
  • Theoretical calculations indicate that their light absorption involves π-π* transitions, with a distinct charge transfer occurring in the 10,10-dioxido-9-thioxanthene variant.
View Article and Find Full Text PDF

AtmoSpec-A Tool to Calculate Photoabsorption Cross-Sections for Atmospheric Volatile Organic Compounds.

J Phys Chem A

October 2024

Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom.

Characterizing the photolysis processes undergone by transient volatile organic compounds (VOCs) in the troposphere requires the knowledge of their photoabsorption cross-section-quantities often challenging to determine experimentally, particularly due to the reactivity of these molecules. We present a computational tool coined AtmoSpec, which can predict a quantitative photoabsorption cross-section for volatile organic compounds by using computational photochemistry. The user enters the molecule of interest as a SMILES code and, after selecting a level of theory for the electronic structure (and waiting for the calculations to take place), is presented with a photoabsorption cross-section for the low-energy conformers and an estimate of the photolysis rate coefficient for different standardized actinic fluxes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!