We report on the observation of Zener tunneling of light waves in spectral and time-resolved transmission measurements, performed on an optical superlattice made of porous silicon. The structure was designed to have two photonic minibands, spaced by a narrow frequency gap. A gradient in the refractive index was introduced to create two optical Wannier-Stark ladders and, at a critical value of the optical gradient, tunneling between energy bands was observed in the form of an enhanced transmission peak and a characteristic time dependence of the transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.94.127401DOI Listing

Publication Analysis

Top Keywords

zener tunneling
8
tunneling light
8
light waves
8
optical superlattice
8
optical
4
waves optical
4
superlattice report
4
report observation
4
observation zener
4
waves spectral
4

Similar Publications

Here we experimentally demonstrate the dynamics of Bloch-Zener oscillations (BZOs) in a synthetic temporal lattice formed by the optical pulses in coupled fiber loops. By periodically modulating the phases imposed to the optical pulses in linear driven lattices, a two-band Floquet system with tunable bandgaps is realized, and the related BZOs that occurred in this system are displayed. On this basis, by manipulating the phase difference and coupling angle of the synthetic lattice, the widths of 0-gap and -gap are tuned feasibly so that a wide variety of the interplays between Bloch oscillations and Landau-Zener tunneling (LZT) are exhibited.

View Article and Find Full Text PDF

Any means to control gravity like electromagnetism is currently out of reach by many orders of magnitude even under extreme laboratory conditions. Some often poorly executed experiments or pseudoscience theories appear from time to time claiming for example anomalous forces from capacitors that suggest a connection between the two fields. We developed novel and high resolution horizontal-, vertical- and rotation-balances that allow to test electric devices completely shielded and remotely controlled under high vacuum conditions to perform the first in-depth search for such a coupling using steady fields.

View Article and Find Full Text PDF

Electrochemical versus Photoelectrochemical Water Oxidation Kinetics on Bismuth Vanadate (Photo)anodes.

J Am Chem Soc

May 2024

Department of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom.

This study reports a comparison of the kinetics of electrochemical (EC) versus photoelectrochemical (PEC) water oxidation on bismuth vanadate (BiVO) photoanodes. Plots of current density versus surface hole density, determined from operando optical absorption analyses under EC and PEC conditions, are found to be indistinguishable. We thus conclude that EC water oxidation is driven by the Zener effect tunneling electrons from the valence to conduction band under strong bias, with the kinetics of both EC and PEC water oxidation being determined by the density of accumulated surface valence band holes.

View Article and Find Full Text PDF

We implement coherent delocalization as a tool for improving the two primary metrics of atomic clock performance: systematic uncertainty and instability. By decreasing atomic density with coherent delocalization, we suppress cold-collision shifts and two-body losses. Atom loss attributed to Landau-Zener tunneling in the ground lattice band would compromise coherent delocalization at low trap depths for our ^{171}Yb atoms; hence, we implement for the first time delocalization in excited lattice bands.

View Article and Find Full Text PDF

An accurate method is proposed to deal with such nonadiabatic transitions as those energetically inaccessible, namely, classically forbidden transitions. This is formulated by using the corresponding Zhu-Nakamura formulas and finding the optimal paths in the classically forbidden tunneling regions that maximize the overall transition probabilities. This can be done for both the nonadiabatic tunneling type (so-called normal case in electron transfer) in which two diabatic potentials have opposite signs of slopes and the Landau-Zener type (inverted case) in which two diabatic potentials have the same sign of slopes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!