Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
When a neuron receives a randomly fluctuating input current, its reliability of spike generation improves compared with the case of a constant input current [Mainen and Sejnowski, Science 268, 1503 (1995)]. This phenomenon can be interpreted as phase synchronization between uncoupled nonlinear oscillators subject to a common external input. We analyze this phenomenon using dynamical models of neurons, assuming the input current to be a simple random telegraphic signal that jumps between two values, and the neuron to be always purely self-oscillatory. The internal state of the neuron randomly jumps between two limit cycles corresponding to the input values, which can be described by random phase maps when the switching time of the input current is sufficiently long. Using such a random map description, we discuss the synchrony of neural oscillators subject to fluctuating inputs. Especially when the phase maps are monotonic, we can generally show that the Lyapunov exponent is negative, namely, phase synchronization is stable and reproducibility of spike timing improves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.71.036217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!