Nonlinear motion of optically torqued nanorods.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA.

Published: March 2005

We apply light torques to single optically trapped glass nanorods suspended in water. The resulting motion is studied experimentally and consists of two distinct regimes: a linear regime where the rod angle increases linearly with time and a nonlinear regime where the rod angle changes nonlinearly, experiencing accelerations and rapid reversals. We present a detailed theoretical treatment for the motion of such nanorods, which agrees extremely well with the observed motion. The experiments are carried out so that the trapped and torqued nanorods move without influence from surfaces. Such a model system is critical to understanding the more complex motion that occurs near a surface. Studying such nonlinear motion both free of, and near, a surface is important for understanding nanofluidics and hydrodynamic motion at the nanoscale.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.71.036204DOI Listing

Publication Analysis

Top Keywords

nonlinear motion
8
torqued nanorods
8
regime rod
8
rod angle
8
motion
6
motion optically
4
optically torqued
4
nanorods
4
nanorods apply
4
apply light
4

Similar Publications

Background: This research investigates the unsteady magnetohydrodynamic (MHD) flow, heat, and mass transfer of tangent hyperbolic ternary hybrid nanofluids over a permeable stretching sheet. The study considers three types of nanoparticles-aluminum oxide (Al₂O₃), copper (Cu), and titanium oxide (TiO₂)-dispersed in a base fluid of ethylene glycol (C₂H₆O₂). This ternary hybrid nanofluid (Al₂O₃-Cu-TiO₂/C₂H₆O₂) has potential applications in cooling systems, biomedical uses for targeted drug delivery and hyperthermia treatments, heat exchangers, and polymer processing techniques like extrusion and casting.

View Article and Find Full Text PDF

This research examines the free vibration characteristics of composite ring-like structures enhanced with carbon nanotubes (CNTs), taking into account the effects of CNT agglomeration. The structural framework comprises two concentric composite rings linked by elastic springs, creating a coupled beam ring (CBR) system. The first-order shear deformation theory (FSDT) is applied to account for transverse shear deformation, while Hamilton's principle is employed to formulate the governing equations of motion.

View Article and Find Full Text PDF

Nanomechanical resonances of two-dimensional (2D) materials are sensitive probes for condensedmatter physics, offering new insights into magnetic and electronic phase transitions. Despite extensive research, the influence of the spin dynamics near a phase transition on the nonlinear dynamics of 2D membranes has remained largely unexplored. Here, we investigate nonlinear magneto-mechanical coupling to antiferromagnetic order in suspended FePS-based heterostructure membranes.

View Article and Find Full Text PDF

Toward autonomous event-based sensorimotor control with supervised gait learning and obstacle avoidance for robot navigation.

Front Neurosci

February 2025

Department of Electrical and Computer Engineering (ECE), Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States.

Miniature robots are useful during disaster response and accessing remote or unsafe areas. They need to navigate uneven terrains without supervision and under severe resource constraints such as limited compute, storage and power budget. Event-based sensorimotor control in edge robotics has potential to enable fully autonomous and adaptive robot navigation systems capable of responding to environmental fluctuations by learning new types of motion and real-time decision making to avoid obstacles.

View Article and Find Full Text PDF

It is widely accepted that biological motion (BM) perception involves the posterior superior temporal sulcus (pSTS). Yet, how individual neurons and neural circuits in pSTS encode BM remains unclear. Here we combined electrophysiological recordings with neural network modeling to elucidate BM computations in two subregions of pSTS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!