We investigate orientational ordering in stretched polymer-dispersed liquid-crystal (PDLC) droplets using deuterium nuclear magnetic resonance, in the nematic and isotropic phases. In the latter case, we estimate the surface order parameter S(0) and the thickness of the interfacial layer from the temperature-independent surface ordering model for an elliptical cavity with a varying aspect ratio. A simple phenomenological model well describes the quadrupole splitting frequency of NMR spectra in the isotropic phase. The strain dependence of S(0) suggests that stretching-induced changes in the orientation of polymer chains in the PDLC matrix noticeably affect liquid-crystal surface anchoring. Experimental results are supported by simulated NMR spectra obtained as output from Monte Carlo simulations of paranematic ordering in ellipsoidal droplets based on the Lebwohl-Lasher lattice model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.71.031702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!