Finite-energy extension of a lattice glass model.

Phys Rev E Stat Nonlin Soft Matter Phys

Irish Centre for Colloid Science and Biomaterials, Department of Chemistry, University College Dublin, Belfield, Ireland.

Published: March 2005

We extend a previously studied lattice model of particles with infinite repulsions to the case of finite-energy interactions. The phase diagram is studied using grand canonical Monte Carlo simulation. Simulations of dynamical phenomena are made using the canonical ensemble. We find interesting order-disorder transitions in the equilibrium phase diagram and identify several anomalous regimes of diffusivity. These phenomena may be relevant to the case of strong orientational bonding near freezing.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.71.030102DOI Listing

Publication Analysis

Top Keywords

phase diagram
8
finite-energy extension
4
extension lattice
4
lattice glass
4
glass model
4
model extend
4
extend studied
4
studied lattice
4
lattice model
4
model particles
4

Similar Publications

Porous Glass with Layered Morphology Prepared by Phase Separation.

Materials (Basel)

March 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.

In this study, porous glass with controllable layered structure was successfully prepared by the phase-separation method, with the aim to develop a high-performance high-temperature catalytic (denitrification) material. Glass compositions with different R values (n (NaO)/n (BO)) were designed based on the phase diagram of sodium borosilicate glass. The layered porous structure was obtained by heat treatment in the phase-separation temperature range and acid-leaching treatment to remove the boron-rich phase.

View Article and Find Full Text PDF

Herein, we report a comprehensive investigation on the thermal transitions of thin films of poly [2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione -3,6-diyl)-alt-(2,2';5',2″;5″,2'″-quaterthiophen-5,5'″-diyl)]PDPP4T, poly[2,6-(4,4-bis-(2-ethy-lhexyl)-4H-cyclopenta [2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] PCPDTBT, 1:1 blend of PDPP4T and PCPDTBT, and their composites with gold nanoparticles (AuNPs). The thermal transitions of these materials were studied using variable temperature spectroscopic ellipsometry (VTSE), with differential scanning calorimetry (DSC) serving as the reference method. Based on obtained VTSE results, for the first time, we have determined the phase diagrams of PDPP4T/PCPDTBT and their AuNPs composites.

View Article and Find Full Text PDF

Dynamic Behavior of PVC Gel Actuators: Nonlinear Effects of Viscoelasticity and Electromechanical Coupling.

Polymers (Basel)

February 2025

Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China.

As an inherent property of polyvinyl chloride (PVC) gel material, viscoelasticity is closely related to the deformation of the material, which will affect its dynamic behavior. However, the existing theoretical model does not consider the influence of time-varying damping on its nonlinear vibration, which leads to the unclear nonlinear dynamic behavior of the material under the dual influence of viscoelasticity and electromechanical parameters and limits the further application of the material. Therefore, in this study, the standard linear solid (SLS) model was used to describe the time-varying dynamic change of viscoelasticity of PVC gel, and the electromechanical coupling second-order nonlinear constitutive equation of PVC gel actuator was established by combining the Gent free energy theory model.

View Article and Find Full Text PDF

Although the brain is often characterized as a complex system, theoretical and philosophical frameworks often struggle to capture this. For example, mainstream mechanistic accounts model neural systems as fixed and static in ways that fail to capture their dynamic nature and large set of possible behaviors. In this paper, we provide a framework for capturing a common type of complex system in neuroscience, which involves two main aspects: (i) constraints on the system and (ii) the system's possibility space of available outcomes.

View Article and Find Full Text PDF

Deep-Learning-Assisted Understanding of the Self-Assembly of Miktoarm Star Block Copolymers.

ACS Nano

March 2025

School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.

The self-assemblies of topological complex block copolymers, especially the AB type miktoarm star ones, are fascinating topics in the soft matter field, which represent typical self-assembly behaviors analogous to those of biological membranes. However, their diverse topological asymmetries and versatile spontaneous curvatures result in rather complex phase separations that deviate significantly from the common mechanisms. Thus, numerous trial-and-error experiments with tremendous parameter space and intricate relationships are needed to study their assemblies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!