To use MIBI or not to use MIBI? That is the question when assessing tumour cells.

Eur J Nucl Med Mol Imaging

UPRES 2360 Ciblage et Imagerie Fonctionnelle de la Progression Tumorale, Faculté de Médecine, Bobigny, France.

Published: July 2005

99mTc-sestamibi (MIBI) is a well-known tumour imaging agent. Its retention within tumour cell mitochondria is related to perfusion and to the magnitude of the electrical gradient, reflecting cell viability. Several internal cell factors modulate this uptake; for example, multidrug resistance membrane proteins (Pgp and MRP1) and anti-apoptotic BCl-2 protein of the outer mitochondrial membrane can limit retention of MIBI. At the early stage of cell apoptosis, the electrical driving forces of MIBI uptake are impaired, and influx and accumulation are reduced. It seems clear that MIBI can be used before treatment to detect drug resistance, assess anti-apoptotic status and predict treatment efficacy. Although it has been suggested that MIBI might be used to monitor tumour response to treatment, MIBI is unable to differentiate tumours with ongoing apoptosis from those developing drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-005-1840-xDOI Listing

Publication Analysis

Top Keywords

drug resistance
8
mibi
7
mibi mibi?
4
mibi? question
4
question assessing
4
tumour
4
assessing tumour
4
tumour cells
4
cells 99mtc-sestamibi
4
99mtc-sestamibi mibi
4

Similar Publications

Introduction: Dolutegravir (DTG) + lamivudine (3TC) demonstrated high rates of virologic suppression (VS) and low rates of virologic failure (VF), discontinuation, and drug resistance in randomized trials. Real-world evidence can support treatment effectiveness, safety, and tolerability in clinical practice and aid in treatment decisions.

Methods: A systematic literature review (SLR) was conducted to identify studies using DTG + 3TC (January 2013-March 2024).

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.

View Article and Find Full Text PDF

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!