Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The recombinant human liver prolidase (rh-prolidase, EC 3.4.13.9) from the lysate supernatant of engineering yeast Saccharomyces cerevisiae was purified in two steps employing anion-exchange gradient chromatography (DEAE-Sepharose fast flow) and gel filtration chromatography (Sephacryl S-200 high resolution). The purified recombinant protein furnished a single band with a molecular weight of 56 kD. Intensity scanning of the SDS-PAGE gel revealed that the prolidase accounted for more than 90% of total protein. The optimum pH of the catalytic reaction was 8.0. The enzyme was stimulated by Mn2+, but strongly inhibited by Cu2+ and Zn2+. The rh-prolidase expressed in S. cerevisiae had both dipeptidase and organophosphorus acid anhydrolase activity. It catalyzed the hydrolysis of soman and the dipeptide Gly -Pro. In a detoxification test in vitro, purified rh-prolidase was remarkably efficient at eliminating the toxicity of a lethal dose of soman, with the result that mice survived injection of such a dose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-004-0634-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!