Experimental evidence indicates that long-term exposure to moderately high ambient temperature (heat acclimation, HA) mediates cross-tolerance to various types of subsequently applied stress. The transcriptional activator hypoxia-inducible factor 1 (HIF-1) has been implicated in playing a critical role in HA. It also regulates the expression of Erythropoietin (Epo), whose neuroprotective effects have been shown in a variety of brain injuries. The aim of the present study was to examine whether HA exerts a beneficial effect on the outcome of closed head injury (CHI) in mice and to explore the possible involvement of HIF-1 and Epo in this process. Heat acclimated mice and matched normothermic controls were subjected to CHI or sham surgery. Postinjury motor and cognitive parameters of acclimated mice were compared with those of controls. Mice were killed at various time points after injury or sham surgery and brain levels of HIF-1alpha, the inducible subunit of HIF-1, Epo, and the specific erythropoietin receptor (EpoR) were analyzed by Western immunoblotting. Motor and cognitive functions of acclimated mice were significantly better than those of controls. Heat acclimation was found to induce a significant increase in expression of nuclear HIF-1alpha and EpoR. The EpoR/Epo ratio was also significantly higher in acclimated mice as compared with controls. Nuclear HIF-1alpha and EpoR were higher in the acclimated group at 4 h after injury as well. The improved outcome of acclimated mice taken together with the basal and postinjury upregulation of the examined proteins suggests the involvement of this pathway in HA-induced neuroprotection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.jcbfm.9600142 | DOI Listing |
Commun Biol
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.
View Article and Find Full Text PDFElife
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, United States.
High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky College of Medicine, Sanders-Brown Center on Aging, Lexington, KY, USA.
Background: Vascular pathology profoundly comorbid with AD pathology could worsen disease progression and reduce treatment efficacy. Knowledge of small vessels and cerebrovascular function in AD mouse models is limited. Investigating vascular related aspects for preclinical AD studies is essential for biomarker development and treatment trials.
View Article and Find Full Text PDFNutrients
December 2024
Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea.
Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined.
View Article and Find Full Text PDFCells
December 2024
Workgroup Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
Metabolic flexibility describes the capability to switch between oxidative fuels depending on their availability during diet or exercise. In a previous study, we demonstrated that in response to training, marathon (DUhTP) mice, paternally selected for high treadmill performance, are metabolically more flexible than unselected control (DUC) mice. Since exercise-associated metabolic flexibility can be assessed by indirect calorimetry or partially by circulating lactate concentrations, we investigated these parameters in DUhTP and DUC mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!