Increasing evidence suggests that the folding and maturation of monomeric proteins and assembly of multimeric protein complexes in the endoplasmic reticulum (ER) may be inefficient not only for mutants that carry changes in the primary structure but also for wild type proteins. In the present study, we demonstrate that the rat luteinizing hormone receptor, a G protein-coupled receptor, is one of these proteins that matures inefficiently and appears to be very prone to premature degradation. A substantial portion of the receptors in stably transfected human embryonic kidney 293 cells existed in immature form of M(r) 73,000, containing high mannose-type N-linked glycans. In metabolic pulse-chase studies, only approximately 20% of these receptor precursors were found to gain hormone binding ability and matured to a form of M(r) 90,000, containing bi- and multiantennary sialylated N-linked glycans. The rest had a propensity to form disulfide-bonded complexes with a M(r) 120,000 protein in the ER membrane and were eventually targeted for degradation in proteasomes. The number of membrane-bound receptor precursors increased when proteasomal degradation was inhibited, and no cytosolic receptor forms were detected, suggesting that retrotranslocation of the misfolded/incompletely folded receptors is tightly coupled to proteasomal function. Furthermore, a proteasomal blockade was found to increase the number of receptors that were capable of hormone binding. Thus, these results raise the interesting possibility that luteinizing hormone receptor expression at the cell surface may be controlled at the ER level by regulating the number of newly synthesized proteins that will mature and escape the ER quality control and premature degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M413815200 | DOI Listing |
Subst Abuse Rehabil
January 2025
Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al Qura University, Makkah, Saudi Arabia.
Background: Many studies indicate that high and multiple doses of anabolic-androgenic steroids (AAS) for athletic enhancement can result in serious and irreversible adverse effects. A study that includes laboratory blood testing to evaluate the direct effects of AAS agents among users has not been previously undertaken. The purpose of this study was to investigate the adverse effects of the use of AAS by athletes and to determine whether AAS use leads to changes in certain blood parameters.
View Article and Find Full Text PDFJCEM Case Rep
February 2025
Clinica Medica 3, Department of Medicine-DIMED, University Hospital of Padova, Padova 35128, Italy.
Growth hormone (GH) secretion by the pituitary is regulated by stimulatory and inhibitory pathways such as growth hormone releasing hormone (GHRH) and somatostatin, respectively, being also modulated by different neurotransmitters acting at the hypothalamic/pituitary level. The pineal gland hormone melatonin regulates GH secretion in many mammals, including humans, although its role in modulating GH secretion has been debated. We describe the case of a young woman chronically taking melatonin for sleep disturbances, referring to her general practitioner for flushing that appeared just after starting melatonin intake.
View Article and Find Full Text PDFArch Endocrinol Metab
January 2025
Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo Laboratório de Hormônios e Genética Molecular LIM/42 Divisão de Endocrinologia São PauloSP Brasil Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Laboratório de Hormônios e Genética Molecular LIM/42 - Divisão de Endocrinologia, São Paulo, SP, Brasil.
Objective: The aim of this study was to characterize the parameters of reproductive anatomy and pituitary hormone expression levels in ames dwarf mice ).
Materials And Methods: Male mice aged 30 days received daily intraperitoneal injections of recombinant human GH and levothyroxine three times weekly for 60 days. The sexual maturation of these animals was compared with that of their wild-type ( ) and untreated ( ) siblings.
Metabol Open
March 2025
University of West Attica (UNIWA), School of Health and Care Science, Department of Midwifery, Ag. Spyridonos Str., Egaleo, Postal Code 12243, Athens, Greece.
Introduction: Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder characterized by hyperandrogenism, insulin resistance, and menstrual irregularities, leading to infertility in many women. Emerging evidence suggests intermittent fasting (IF), particularly time-restricted feeding (TRF), may improve reproductive and metabolic outcomes in women with PCOS by addressing core pathophysiological mechanisms. This systematic review examines the impact of IF on fertility and reproductive hormones in women with PCOS.
View Article and Find Full Text PDFAndrology
January 2025
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
The neuroendocrine system that comprises the glycoprotein hormones (GpHs) and their receptors is essential for reproduction and metabolism. Each GpH hormone is an αβ heterodimer of cystine-knot proteins and its cognate receptor is a G-protein coupled receptor (GPCR) distinguished by a large leucine-rich-repeat (LRR) extracellular domain that binds the hormone and a class A GPCR transmembrane domain that signals through an associating heterotrimeric G protein. Hence, the receptors are called LRR-containing GPCRs-LGRs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!