Metal-ligand bifunctional catalysis for asymmetric hydrogenation.

Philos Trans A Math Phys Eng Sci

Department of Chemistry and Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.

Published: April 2005

Chiral diphosphine/1,2-diamine-Ru(II) complexes catalyse the rapid, productive and enantioselective hydrogenation of simple ketones. The carbonyl-selective hydrogenation takes place via a non-classical metal-ligand bifunctional mechanism. The reduction of the C=O function occurs in the outer coordination sphere of an 18e trans-RuH2(diphosphine)(diamine) complex without interaction between the unsaturated moiety and the metallic centre. The Ru atom donates a hydride and the NH2 ligand delivers a proton through a pericyclic six-membered transition state, directly giving an alcoholic product without metal alkoxide formation. The enantiofaces of prochiral ketones are differentiated on the chiral molecular surface of the saturated RuH2 species. This asymmetric catalysis manifests the significance of 'kinetic' supramolecular chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2004.1536DOI Listing

Publication Analysis

Top Keywords

metal-ligand bifunctional
8
bifunctional catalysis
4
catalysis asymmetric
4
asymmetric hydrogenation
4
hydrogenation chiral
4
chiral diphosphine/12-diamine-ruii
4
diphosphine/12-diamine-ruii complexes
4
complexes catalyse
4
catalyse rapid
4
rapid productive
4

Similar Publications

Remote C-H bond cooperation strategy enabled silver catalyzed borrowing hydrogen reactions.

Chem Sci

December 2024

School of Materials Science and Engineering, PCFM Lab, the Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University Guangzhou 510006 P. R. China

Metal-ligand cooperation (MLC) is an essential strategy in transition metal catalysis. Traditional NH-based and OH-based MLC catalysts, as well as the later developed (de)aromatization strategy, have been widely applied in atom-economic borrowing hydrogen/hydrogen auto-transfer (BH/HA) reactions. However, these conventional MLC approaches are challenging for low-coordination and low-activity coinage metal complexes, arising from the instability during (de)protonation on the coordination atom, the constraint in linear coordination, and possible poisoning due to extra functional sites.

View Article and Find Full Text PDF

The development of efficient methods for the direct introduction of a methyl group into molecules is becoming increasingly important. Herein, the β-methylation of primary alcohols with methanol has been accomplished under environmentally benign conditions using [Cp*Ir(2,2'-bpyO)(HO)] as a catalyst. It was found that functional groups in the ligand are crucially important for the activity of the iridium complex.

View Article and Find Full Text PDF

An efficient method for the selective conversion of glycerol, the major byproduct of the biodiesel manufacturing process, to lactic acid in water via acceptorless dehydrogenation has been developed. In the presence of a water-soluble [Cp*Ir(6,6'-(OH)-2,2'-bpy)(HO)][OTf] (0.1 mol %) and KOH (1.

View Article and Find Full Text PDF

Complex interactions between noncoordinating residues are significant yet commonly overlooked components of macromolecular catalyst function. While these interactions have been demonstrated to impact binding affinities and catalytic rates in metalloenzymes, the roles of similar structural elements in synthetic polymeric catalysts remain underexplored. Using a model Suzuki-Miyuara cross-coupling reaction, we performed a series of systematic studies to probe the interconnected effects of metal-ligand cross-links, electrostatic interactions, and local rigidity in polymer catalysts.

View Article and Find Full Text PDF

[(-Cymene)Ru(2,2'-bpyO)(HO)] was proven to be an efficient catalyst for the synthesis of amino-(-alkyl)benzenesulfonamides via selective N-alkylation of aminobenzenesulfonamides with alcohols. It was confirmed that functional groups in the bpy ligand are crucial for the activity of catalysts. Furthermore, the utilization of this catalytic system for the preparation of a biologically active compound was presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!