The effect of excess copper on the expression of soluble proteins in 10-day old Phaseolus vulgaris seedlings was studied with two-dimensional electrophoresis and mass spectrometry, to find sensitive biochemical markers of exposure. Despite major differences in root Cu contents, both 15 and 50 microM Cu treatments resulted in equal enhancements of Cu in the primary leaves. Three proteins, apparently reacting in a dose-dependent manner to Cu exposure, were identified from roots. The levels of an intracellular pathogenesis-related protein and a newly identified protein homologous to PvPR1, PvPR2, were increased with increasing Cu concentration. The level of a newly identified PR-10 protein decreased in a dose-dependent manner. No significant difference was observed in the leaf protein pattern between controls and 15 microM Cu-treated plants. However, at 50 microM Cu exposure, the appearance of PvPR1 and a homologue of Arabidopsis thaliana thylakoid lumenal 17.4kDa protein was observed. Another protein slightly enhanced by Cu treatment had sequence homology to a mitochondrial precursor of glycine cleavage system H protein of Flaveria pringlei.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2004.07.018 | DOI Listing |
BMC Plant Biol
January 2025
College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
In recent years, black beans (Phaseolus vulgaris L.) have gained popularity in the U.S.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA.
The resistance () gene family in plants is a vital component of the plant defense system, enabling host resistance against pathogens through interactions with pathogen effector proteins. These R genes often encode nucleotide-binding (NB-ARC or N) and leucine-rich-repeat (LRR or L) domains, collectively forming the NLR protein family. The NLR proteins have been widely explored in crops from and , but limited studies are available for crops in other families, including .
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Km 8.5 Carr. Yautepec-Jojutla, Yautepec, Morelos, C.P. 62731, México.
The relationship between the gut microbiota (GM) and the health of human beings has been a topic of growing interest in the last few years. Legumes are a rich source of indigestible carbohydrates, including resistant starch (RS), which are substrates of the GM. The aim of this study was to evaluate the effect of the indigestible fraction of legumes on the fecal microbiota of normal-weight (NW) and obese (O) donors.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
Common bean (Phaseolus vulgaris L.) is a crop rich in protein, minerals, and starch. Viruses are a significant limiting factor in increasing the production of legumes, particularly common beans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!