The docking protein p130Cas has, together with FAK, been found as a target of the Yersinia virulence effector YopH. YopH is a protein tyrosine phosphatase that is delivered into host cells via the bacterial type III secretion machinery, and the outcome of its activity is inhibition of host cell phagocytosis. In the present study using p130Cas-/- cells, and p130Cas-/- cells expressing variants of GFPp130Cas, we show that this docking protein, via its substrate domain, is responsible for subcellular targeting of YopH in eukaryotic cells. Since YopH inhibits phagocytosis, p130Cas was expected to be critical for signalling mediating bacterial internalization. However, p130Cas-/- cells did not exhibit reduced capacity to internalize Yersinia. On the other hand, when a dominant negative variant of p130Cas was expressed in these cells, the phagocytic capacity was severely impaired. Moreover, the p130Cas-/- cells displayed a marked reduced sensitivity towards YopH-mediated detachment compared to wild-type cells. Transfecting these cells with full-length p130Cas rendered cells hypersensitive to both mechanical and Yersinia-mediated detachment. This hypersensitivity was not seen upon transfection with the dominant negative substrate domain-deleted variant of p130Cas. This implicates p130Cas as a prominent regulator of cell adhesion, where its substrate-binding domain has a significant function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejcb.2004.11.009DOI Listing

Publication Analysis

Top Keywords

p130cas-/- cells
16
cells
10
cell adhesion
8
effector yoph
8
substrate domain
8
docking protein
8
dominant negative
8
variant p130cas
8
p130cas
7
yoph
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!